Authors
Filter results3 paper(s) found. |
---|
1. Cotton Boll Detection and Yield Estimation Using UAS Lidar Data and RGB ImageCotton boll distribution is a critical phenotypic trait that represents the plant's response to its environment. Accurate quantification of boll distribution provides valuable information for breeding cultivars with high yield and fiber quality. Manual methods for boll mapping are time-consuming and labor-intensive. We evaluated the application of Lidar point cloud and RGB image data in boll detection and distribution and yield estimation. Lidar data was acquired at 15 m using a DJI Matrice... Z. Lin, W. Guo, N. Gill |
2. Modeling Spatial and Temporal Variability of Cotton Yield Using DSSAT for Decision Support in Precision AgricultureThe quantification of spatial and temporal variability of cotton yield provides critical information for optimizing resources, especially water. The Southern High Plains (SHP) of Texas is a major cotton (Gossypium hirsutum L.) production region with diminishing water supply. The objective of this study was to predict cotton yield variability using soil properties and topographic attributes. The DSSAT CROPGRO-Cotton model was used to simulate cotton growth, development and yield using... B.P. Ghimire, O. Adedeji, Z. Lin, W. Guo |
3. Estimation of Cotton Biomass Using Unmanned Aerial Systems and Satellite-based Remote SensingSatellite and unmanned aerial system (UAS) images are effective in monitoring crop growth at various spatial, temporal, and spectral scales. The objective of the study was to estimate cotton biomass at different growth stages using vegetation indices (VIs) derived from UAS and satellite images. This research was conducted in a cotton field in Hale County, Texas, in 2021. Data collected include 54 plant samples at different locations for three dates of the growing season. Multispectral images from... O.I. Adedeji, B.P. Ghimire, H. Gu, R. Karn, Z. Lin, W. Guo |