Authors
Filter results1 paper(s) found. |
---|
1. Supervised Feature Selection and Clustering for Equine Activity RecognitionIn this paper we introduce a novel supervised algorithm for equine activity recognition based on accelerometer data. By combining an approach of calculating a wide variety of time-series features with a supervised feature significance test we can obtain the best suited features using just 5 labeled samples per class and without requiring any expert domain knowledge. By using a simple cluster assignment algorithm with these obtained features, we get a classification algorithm that achieves a mean... T. De waele, D. Peralta, A. Shahid, E. De poorter |