Authors
Filter results8 paper(s) found. |
---|
1. Using A Decision Tree To Predict The Population Density Of Redheaded Cockchafer (Adoryphorus Couloni) In Dairy FieldsA native soil dwelling insect pest, the redheaded cockchafer (Adoryphorus couloni) (Burmeister) (RHC) is an important pest in the higher rainfall regions of south-eastern Australia. Due to the majority of its lifecycle spent underground feeding on the roots and soil organic matter the redheaded cockchafer is difficult to detect and control. The ability to predict the level of infestation and location of redheaded cockchafers in a field may give producers the option to use an endophyte containing... A. Cosby, G. Falzon, M. Trotter, J. Stanley, K. Powell, D. Schneider, D. Lamb |
2. Non-destructive Plant Phenotyping Using a Mobile Hyperspectral System to Assist Breeding Research: First ResultsHybrid plants feature a stronger vigor, an increased yield and a better environmental adaptability than their parents, also known as heterosis effect. Heterosis of winter oilseed rape is not yet fully understood and conclusions on hybrid performance can only be drawn from laborious test crossings. Large scale field phenotyping may alleviate this process in plant breeding. The aim of this study was to test a low-cost mobile ground-based hyperspectral system for breeding research to easily... H. Gerighausen, H. Lilienthal, E. Schnug |
3. First Experiences with the European Remote Sensing Satellites Sentinel-1A/ -2A for Agricultural ResearchThe Copernicus program headed by the European Commission (EC) in partnership with the European Space Agency (ESA) will launch up to twelve satellites, the so called “Sentinels” for earth and environmental observations until 2020. Within this satellite fleet, the Sentinel-1 (microwave) and Sentinal-2 (optical) satellites deliver valuable information on agricultural crops. Due to their high temporal (5 to 6 days repeating time) and spatial (10 to 20 m) resolutions a continuous monitoring... H. Lilienthal, H. Gerighausen, E. Schnug |
4. Static and Kinematic Tests for Determining Spreaders Effective WidthSpinner box spreaders are intensively used in Brazil for variable rate applications of lime in agriculture. The control of that operation is a challenging issue because of the complexity involved on the interactions between product and machine. Quantification of transverse distribution of solids thrown from the spinner box spreaders involves dynamic conditions tests where the material deposited on trays is evaluated along the pass of the machinery. There is a need of alternative testing methods... L. Maldaner, T. Canata, J. Molin, B. Passalaqua, J.J. Quirós |
5. Measurement of In-field Variability for Active Seeding Depth Applications in Southeastern USProper seeding depth control is essential to optimize row-crop planter performance, and adjustment of planter settings to within field spatial variability is required to maximize crop yield potential. The objectives of this study were to characterize planting depth response to varying soil conditions within fields, and to discuss implementation of active seeding depth technologies in Southeastern US. This study was conducted in 2014 and 2015 in central Alabama for non-irrigated maize (Zea mays... A.M. Poncet, J.P. Fulton, T.P. Mcdonald, T. Knappenberger, R.W. Bridges, J. Shaw, K. Balkcom |
6. Agricultural Remote Sensing Information for Farmers in GermanyThe European Copernicus program delivers optical and radar satellite imagery at a high temporal frequency and at a ground resolution of 10m worldwide with an open data policy. Since July 2017 the satellite constellation of the Sentinel-1 and -2 satellites is fully operational, allowing e.g. coverage of Germany every 1-2 days by radar and every 2-3 days with optical sensors. This huge data source contains a variety of valuable input information for farmers to monitor the in-field variability and... H. Lilienthal, H. Gerighausen, E. Schnug |
7. Making Irrigator Pro an Adaptive Irrigation Decision Support SystemIrrigator Pro is a public domain irrigation scheduling model developed by the USDA-ARS National Peanut Research Laboratory. The latest version of the model uses either matric potential sensors to estimate the plant’s available soil water or manual data input. In this project, a new algorithm is developed, which will provide growers and consultants with much more flexibility in how they can feed data to the model. The new version will also run with Volumetric Water Content sensors, giving... I. Gallios, G. Vellidis, C. Butts |
8. Deep Learning to Estimate Sorghum Yield with Uncrewed Aerial System ImageryIn the face of growing demand for food, feed, and fuel, plant breeders are challenged to accelerate yield potential through quick and efficient cultivar development. Plant breeders often conduct large-scale trials in multiple locations and years to address these goals. Sorghum breeding, integral to these efforts, requires early, accurate, and scalable harvestable yield predictions, traditionally possible only after harvest, which is time-consuming and laborious. This research harnesses high-throughput... M.A. Bari, A. Bakshi, T. Witt, D. Caragea, K. Jagadish, T. Felderhoff |