Authors
Filter results9 paper(s) found. |
---|
1. Characterization of Soil Properties, Nutrient Distribution and Rice (Oryza Sativa.) Productivity As Influenced by Tillage Methods in a Typical GleysolsGlobal emphasis and interest in conservation Tillage in agricultural soils has tremendously increased in the last few years, especially no tillage with its potential to improve soil physicochemical properties, reduce nutrient leaching as well as improve crop productivity in a more sustainable manner. Several questions still exist with regard to the true role of no tillage in improving soil fertility. A two year field study was conducted to characterize the effects of different tillage methods... F. Issaka, L. Yongtao, L. Jiuhao, M.M. Buri, E. Asenso, A. Sheka kanu, Z. Zhao |
2. Estimating Litchi Canopy Nitrogen Content Using Simulated Multispectral Remote Sensing DataThis study aims at evaluating the performance of seven highly spatial resolution remote sensing data in litchi canopy nitrogen content estimation. The litchi canopy reflectance were collected by ASD field spectrometer. Then the canopy spectral data were resampled based on the spectral response functions of each satellite sensors (Geo-eye, GF-WFV1, Rapid-eye, WV-2, Landsat 8, WV-3, and Sentinel-2). The spectral indices in literature were derived based on the simulated data. Meanwhile, the successive... D. Li, H. Jiang, S. Chen, C. Wang |
3. Developing a Machine Learning and Proximal Sensing-based In-season Site-specific Nitrogen Management Strategy for Corn in the US MidwestEffective in-season site-specific nitrogen (N) management strategies are urgently needed to ensure both food security and sustainable agricultural development. Different active canopy sensor-based precision N management strategies have been developed and evaluated in different parts of the world. Recent studies evaluating several sensor-based N recommendation algorithms across the US Midwest indicated that these locally developed algorithms generally did not perform well when used broadly across... D. Li, Y. Miao, .G. Fernández, N.R. Kitchen, C. . Ransom, G.M. Bean, .E. Sawyer, J.J. Camberato, .R. Carter, R.B. Ferguson, D.W. Franzen, D.W. Franzen, D.W. Franzen, D.W. Franzen, C.A. Laboski, E.D. Nafziger, J.F. Shanahan |
4. Evaluating the Potential of Improving In-season Nitrogen Status Diagnosis of Potato Using Leaf Fluorescence Sensors and Machine LearningPrecision nitrogen (N) management is particularly important for potato crops due to their high N fertilizer demand and high N leaching potential caused by their shallow root systems and preference for coarse-textured soils. Potato farmers have been using a standard lab analysis called petiole nitrate-N (PNN) test as a tool to diagnose potato N status and guide in-season N management. However, the PNN test suffers from many disadvantages including time constraints, labor, and cost of analysis.... S. Wakahara, Y. Miao, S. Gupta, C. Rosen, K. Mizuta, J. Zhang, D. Li |
5. Hay Yield Estimation Using UAV-based Imagery and a Convolutional Neural NetworkYield monitoring systems are widely used commercially in grain crops to map yields at a scale of a few meters. However, such high-resolution yield monitoring and mapping for hay and forage crops has not been commercialized. Most commercial hay yield monitoring systems only obtain the weight of individual bales, making it difficult to map and understand the spatial variability in hay yield. This study investigated the feasibility of an unmanned aerial vehicle (UAV)-based remote sensing system for... K. Lee, K.A. Sudduth, J. Zhou |
6. Spatial Analysis of Soil Moisture and Turfgrass Health to Determine Zones for Spatially Variable Irrigation ManagementThe Western United States is currently experiencing a “Mega Drought”. This makes efficient water use more important than ever. Turfgrass is a major vegetation type in urban areas and performs many ecosystem services such as cooling through evapotranspiration, fixing carbon from the atmosphere and reducing wild-fire risk. There are now more acres of irrigated turfgrass (>40 million) in the USA than irrigated corn, wheat and fruit trees combined (Milesi et al., 2005). It has been... R. Kerry, S. Shumate, B. Ingram, K. Hammond, D. Gunther, R. Jensen, S. Schill, N. Hansen, B. Hopkins |
7. Sampling Bumble Bees and Floral Resources Using Deep Learning and UAV ImageryPollinators, essential components of natural and agricultural systems, forage over relatively large spatial scales. This is especially true of large generalist species, like bumble bees. Thus, it can be difficult to estimate the amount and diversity of floral resources available to them. Floral cover and diversity are often estimated over large areas by extrapolation from small scale samples (e.g., a 1-m quadrat) but the accuracy of such estimates can vary depending on the spatial patchiness of... B. Spiesman, I. Grijalva, D. Holthaus, B. Mccornack |
8. Detection of Sorghum Aphids with Advanced Machine VisionSorghum aphid, Melanaphis sorghi (Theobald), became a significant pest concern due to the significant yield losses caused in the sorghum production region. Different management practices, including monitoring and applying insecticides, have been used to manage this invasive pest in sorghum. The most common management strategy consists of visual assessments of aphids on sorghum leaves to determine an economic threshold level to spray. However, because of their rapid reproduction,... I.A. Grijalva teran, B. Spiesman, N. Clark, B. Mccornack |
9. Remote and Proximal Sensing for Sustainable Water Use in Almond Orchards in Southeast Spain in a Digital Farming ContextThe increasing expansion of irrigated almond orchards in regions of southeast Spain, facing water scarcity, underscores the need for a more effective and precise monitoring of the crop water status to optimize irrigation scheduling and improve crop water use efficiency. Remote and proximal sensing, combining visible, multispectral and thermal capabilities at different scales allows to estimate water needs, detect and quantify crop water stress, or identify different productivity zones within an... |