Login

Proceedings

Find matching any: Reset
McAvoy, T
Morales, A.C
Muth, D
Modaihsh, A.S
Bresilla, K
Mathew, J.J
Wang, J
Bhusal, S
Mulligan, M
Robinette , M
Add filter to result:
Authors
Mahjoub, O.A
Modaihsh, A.S
Kyveryga, P.M
Fey, S
Connor, J
Kiel, A
Muth, D
Bresilla, K
Manfrini, L
Boini, A
Perulli, G
Morandi, B
Grappadelli, L.C
Bhusal, S
Khanal, K
Karkee, M
Steensma, K.M
Taylor, M.E
KC, K
Hannah, L
Roehrdanz, P
Donatti, C
Fraser, E
Berg, A
Saenz, L
Wright, T.M
Hijmans, R.J
Mulligan, M
Mizuta, K
Miao, Y
Morales, A.C
Lacerda, L.N
Cammarano, D
Nielsen, R.L
Gunzenhauser, R
Kuehner, K
Wakahara, S
Coulter, J.A
Mulla, D.J
Quinn, D.
McArtor, B
Mathew, J.J
Flores, P.J
Stenger, J
Miranda, C
Zhang, Z
Das, A.K
Wang, J
Yu, K
T.Meyer, S
Bedwell, E
Lacerda, L
McAvoy, T
Ortiz, B.V
Snider, J
Vellidis, G
Yu, Z
Morales, A.C
Quinn, D.
Mizuta, K
Miao, Y
Nunes, L
Francisco, E
Prasad, R
Ortiz, B.V
Abban-Baidoo , E
Worosz, M
Robinette , M
O'Connor, C
Gamble, A
Topics
Precision Conservation and Carbon Management
Profitability, Sustainability and Adoption
Big Data, Data Mining and Deep Learning
Applications of Unmanned Aerial Systems
Geospatial Data
In-Season Nitrogen Management
Precision Agriculture and Global Food Security
In-Season Nitrogen Management
Decision Support Systems
Extension or Outreach Education of Precision Agriculture
Type
Poster
Oral
Year
2012
2016
2018
2022
2024
Home » Authors » Results

Authors

Filter results11 paper(s) found.

1. Soil Salinity, Sand Encroachment and Erosion as Indicators of Land Degradation in Harad Center, Saudi Arabia

This study presents the main results of a thorough evaluation of land degradation in Saudi Arabia (Harad Centre). The study was carried out in 2006-2007 as part of a project aimed to study features and causes of land degradation in Saudi Arabia. The study area occupies... O.A. Mahjoub, A.S. Modaihsh

2. Within-field Profitability Assessment: Impact of Weather, Field Management and Soils

Profitability in crop production is largely driven by crop yield, production costs and commodity prices. The objective of this study was to quantify the often substantial yet somewhat illusive impact of weather, management, and soil spatial variability on within-field profitability in corn and soybean crop production using profitability indices for profit (net return) and return-on-investment (ROI) to produce estimates. We analyzed yield and cropping system data provided by 42 farmers within Central... P.M. Kyveryga, S. Fey, J. Connor, A. Kiel, D. Muth

3. Using Deep Learning - Convolutional Naural Networks (CNNS) for Real-Time Fruit Detection in the Tree

Image/video processing for fruit detection in the tree using hard-coded feature extraction algorithms have shown high accuracy on fruit detection during recent years. While accurate, these approaches even with high-end hardware are still computationally intensive and too slow for real-time systems. This paper details the use of deep convolution neural networks architecture based on single-stage detectors. Using deep-learning techniques eliminates the need for hard-code specific features for specific... K. Bresilla, L. Manfrini, A. Boini, G. Perulli, B. Morandi, L.C. Grappadelli

4. Unmanned Aerial Systems (UAS) for Mitigating Bird Damage in Wine Grapes

Bird predation is a significant problem in high-value fruit crops, such as apples, cherries, blueberries, and wine grapes. Conventional methods such as netting, falconry, auditory scaring devices, lethal shooting, and visual scare devices are reported to be ineffective, costly, and/or difficult to manage. Therefore, farmers are in need of more effective and affordable bird control methods. In this study, two UAS wasused as a bird-deterring agent in a commercial vineyard. The experimental... S. Bhusal, K. Khanal, M. Karkee, K.M. Steensma, M.E. Taylor

5. Using Geospatial Data to Assess How Climate Change May Affect Land Suitability for Agriculture Production

Finding solutions to the challenge of sustainably feeding the world’s growing population is a pressing research need that cuts across many disciplines including using geospatial data. One possible area could be developing agricultural frontiers. Frontiers are defined as land that is currently not cultivated but that may become suitable for agriculture under climate change. Climate change may drive large-scale geographic shifts in agriculture, including expansion in cultivation at the thermal... K. Kc, L. Hannah, P. Roehrdanz, C. Donatti, E. Fraser, A. Berg, L. Saenz, T.M. Wright, R.J. Hijmans, M. Mulligan

6. Evaluating a Satellite Remote Sensing and Calibration Strip-based Precision Nitrogen Management Strategy for Corn in Minnesota and Indiana

Precision nitrogen (N) management (PNM) aims to match N supply with crop N demand in both space and time and has the potential to improve N use efficiency (NUE), increase farmer profitability, and reduce N losses and negative environmental impacts. However, current PNM adoption rate is still quite low. A remote sensing and calibration strip-based PNM strategy (RS-CS-PNM) has been developed by the Precision Agriculture Center at the University of Minnesota.... K. Mizuta, Y. Miao, A.C. Morales, L.N. Lacerda, D. Cammarano, R.L. Nielsen, R. Gunzenhauser, K. Kuehner, S. Wakahara, J.A. Coulter, D.J. Mulla, D. . Quinn, B. Mcartor

7. Comparative Analysis of Light-weight Deep Learning Architectures for Soybean Yield Estimation Based on Pod Count from Proximal Sensing Data for Mobile and Embedded Vision Applications

Crop yield prediction is an important aspect of farming and food-production. Therefore, estimating yield is important for crop breeders, seed-companies, and farmers to make informed real-time financial decisions. In-field soybean (Glycine max L.(Merr.)) yield estimation can be of great value to plant breeders as they screen thousands of plots to identify better yielding genotypes that ultimately will strengthen national food security. Existing soybean yield estimation tools,... J.J. Mathew, P.J. Flores, J. Stenger, C. Miranda, Z. Zhang, A.K. Das

8. Evaluating Nitrogen Use Efficiency in Wheat Using UAV Multispectral Images

Nitrogen (N) is one of the most important nutrients for crop growth and development. For crops, nitrogen fertilizer is the guarantee of high yield, but in practical applications, nitrogen fertilizer is often excessive. Therefore precise and rapid assessment of nitrogen use efficiency (NUE) plays a pivotal role in optimizing fertilizer utilization and ensuring responsible use of nitrogen in agriculture. While most of research evaluate NUE from management scales, e.g., from the field,  district... J. Wang, K. Yu, S. T.meyer

9. Using Remote Sensing to Benchmark Crop Coefficient Curves of Sweet Corn Grown in the Southeastern United States

Irrigation is responsible for over 75% of global freshwater use, making it the largest consumer of the world’s freshwater resources. With freshwater scarcity increasing worldwide, increased efficient irrigation water use is necessary. Smart irrigation is described as ‘the linking of technology and fundamental knowledge of crop physiology to significantly increase irrigation water use efficiency'. Irrigation scheduling tools such as smartphone applications have become... E. Bedwell, L. Lacerda, T. Mcavoy, B.V. Ortiz, J. Snider, G. Vellidis, Z. Yu

10. Effects of Crop Rotation on In-season Estimation of Optimal Nitrogen Rates for Corn Based on Proximal and Remote Sensing Data

A remote sensing and calibration strip-based precision nitrogen (N) management (RS-CS-PNM) strategy has been developed by the Precision Agriculture Center at the University of Minnesota to provide in-season N recommendation rates based on satellite imagery. This strategy involves the application of multiple N rates before planting and the identification of the agronomic optimum N rate (AONR) at V7-V8 growth stages using normalized difference vegetation index (NDVI) calculated using satellite imagery.... A.C. Morales, D. . Quinn, K. Mizuta, Y. Miao

Showing 1 to 10 of 11 entries