Authors
Filter results2 paper(s) found. |
---|
1. Prediction of Field-scale Evapotranspiration Using Process Based Modeling and Geostatistical Time-series InterpolationIrrigation scheduling depends on the combination of evaporative demand from the atmosphere, spatial and temporal heterogeneity in soil properties and changes in crop canopy during a growing season. This on-farm trial is based on data collected in 72-acre processing tomato field in Central Valley of California. The Multiband Spectrometric Arable Mark 2 sensors at three different locations in the field. Multispectral and thermal imagery provided by Ceres Imaging were collected eight times during... G. Jha, F. Nazrul, M. Nocco, M. Pagé fortin, B. Whitaker, D. Diaz, A. Gal, R. Schmidt |
2. Machine Learning Algorithms in Detecting Long-term Effect of Climatic Factors for Alfalfa Production in KansasThe water levels of the Ogallala Aquifer are depleting so much that agricultural land returns in Kansas are expected to drop by $34.1 million by 2050. It is imperative to understand how frequent droughts and the contrasting rates of groundwater withdrawal and recharge are affected by climate shifts in Kansas. Alfalfa, the ‘Queen of Forages’, is a water demanding crop which supplies high nutritional feed for beef industry that offered Kansas producers a $500 million production value... F. Nazrul, J. Kim, S. Dey, S. Palla, D. Sihi, B. Whitaker, G. Jha |