Login

Proceedings

Find matching any: Reset
Ciampitti, I
Add filter to result:
Authors
Varela, S
Balboa, G
Prasad, V
Griffin, T
Ciampitti, I
Ferguson, A
Varela, S
Balboa, G
Prasad, V
Griffin, T
Ciampitti, I
Ferguson, A
Balboa, G
Varela, S
Ciampitti, I
Duncan, S
Maxwell, T
Shoups, D
Sharda, A
Sharda, A
Badua, S
Flippo, D
Ciampitti, I
Griffin, T.W
Morris, T
Tremblay, N
Kyveryga, P.M
Clay, D.E
Murrell, S
Ciampitti, I
Thompson, L
Mueller, D
Seger, J
Sharda, A
Badua, S
Ciampitti, I
Strasser, R
Griffin, T.W
Prestholt, A
Hernandez, C
Ciampitti , I
Kyveryga, P
Lemes Bosche, L
Ciampitti, I
Nocera Santiago, G.N
Cisdeli Magalhães, P
Ciampitti, I
Marziotte, L
CARCEDO, A
Carcedo, A
Antunes de Almeida, L.F
Horbe, T
Corassa, G
Pott, L.P
Ciampitti, I
Hintz, G.D
Hefley, T
Schwalbert, R.A
Prasad, V
Lingua, L.N
Carcedo, A
Gimenez, V
Maddonni, G
Ciampitti, I
Gomez, F
CARCEDO, A
Diatta, A
Nagarajan, L
Prasad, V
Stewart, Z
Zingore, S
Ciampitti, I
Djighaly, P
Hernandez, C
Kyveryga, P
Correndo, A
Prestholt, A
Ciampitti, I
van Versendaal, E
Hernandez, C
Kyveryga, P
Ciampitti, I
Magalhaes Cisdeli, P
Nocera Santiago, G.N
Ciampitti, I
Hernandez, C
CARCEDO, A
Ciampitti, I
Lucero, M.F
Zajdband, A
Hernandez, C
Ciampitti, I
CARCEDO, A
Hernandez, C
Correndo, A
Lacasa, J
Magalhaes Cisdeli, P
Nocera Santiago, G.N
Ciampitti, I
Cano, P.B
CARCEDO, A
Gomez, F
Hernandez, C
Gimenez, V
Ciampitti, I
Topics
Remote Sensing Applications in Precision Agriculture
Decision Support Systems in Precision Agriculture
Engineering Technologies and Advances
Standards & Data Stewardship
On Farm Experimentation with Site-Specific Technologies
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
In-Season Nitrogen Management
Artificial Intelligence (AI) in Agriculture
Weather and Models for Precision Agriculture
Data Analytics for Production Ag
Big Data, Data Mining and Deep Learning
Small Holders and Precision Agriculture
Geospatial Data
Decision Support Systems
Country Representative Report
Type
Poster
Oral
Year
2016
2018
2022
2024
Home » Authors » Results

Authors

Filter results19 paper(s) found.

1. Spatial-temporal Evaluation of Plant Phenotypic Traits Via Imagery Collected by Unmanned Aerial Systems (UAS)

Unmanned aerial systems (UAS) and a stereovision approach were implemented to generate a 3D reconstruction of the top of the canopy. The 3D reconstruction or CSM (crop surface model) was utilized to evaluate biophysical parameters for both spatial- and temporal-scales. The main goal of the project was to evaluate sUAVs technology to assist plant height and biomass estimation. The main outcome of this process was to utilize CSMs to gain insights in the spatial-temporal dynamic of plants within... S. Varela, G. Balboa, V. Prasad, T. Griffin, I. Ciampitti, A. Ferguson

2. Spatial-temporal Evaluation of Plant Phenotypic Traits Via Imagery Collected by Unmanned Aerial Systems (UAS)

Unmanned aerial systems (UAS) and a stereovision approach were implemented to generate a 3D reconstruction of the top of the canopy. The 3D reconstruction or CSM (crop surface model) was utilized to evaluate biophysical parameters for both spatial- and temporal-scales. The main goal of the project was to evaluate sUAVs technology to assist plant height and biomass estimation. The main outcome of this process was to utilize CSMs to gain insights in the spatial-temporal dynamic of plants within... S. Varela, G. Balboa, V. Prasad, T. Griffin, I. Ciampitti, A. Ferguson

3. On Farm Studies to Determine Seeding Rate in Corn

Seeding rate (SDR) is one of the most critical production practices impacting productivity and economic return for corn (Zea mays L.) By changing SDRs in different zones within a field, herein termed as site-specific management, better economic results can be produced as the outcome of reducing SDRs in low productivity areas and increasing SDRs under high-yielding environments, relative to the uniform SDR management performed by the producer. The aim of this study was to analyze yield responses... G. Balboa, S. Varela, I. Ciampitti, S. Duncan, T. Maxwell, D. Shoups, A. Sharda

4. Real-time Gauge Wheel Load Variability on Planter with Downforce Control During Field Operation

Downforce control allows planters to maintain gauge wheel load across a range of soil resistance within a field. Downforce control is typically set for a target seed depth and either set to manually or automatically control the gauge wheel load. This technology uses load cells to actively regulate downforce on individual row units by monitoring target load on the gauge wheels. However, no studies have been conducted to evaluate the variability in gauge wheel load observed during planter operation... A. Sharda, S. Badua, D. Flippo, I. Ciampitti, T.W. Griffin

5. Rationale for and Benefits of a Community for On-Farm Data Sharing

Most data sets for evaluating crop production practices have too few locations and years to create reliable probabilities from predictive analytical analyses for the success of the practices. Yield monitors on combines have the potential to enable networks of farmers in collaboration with scientists and farm advisors to collect sufficient data for calculation of more reliable guidelines for crop production showing the probabilities that new or existing practices will improve the efficiency of... T. Morris, N. Tremblay, P.M. Kyveryga, D.E. Clay, S. Murrell, I. Ciampitti, L. Thompson, D. Mueller, J. Seger

6. Influence of Planter Downforce Setting and Ground Speed on Seeding Depth and Plant Spacing Uniformity of Corn

Uniform seed placement improves seed-to-soil contact and requires proper selection of downforce control across varying field conditions. At faster ground speeds, downforce changes and it becomes critical to select the level of planter downforce settings to achieve the desired consistency of seed placement during planting. The objective of this study was to assess the effect of ground speed and downforce setting on seeding depth and plant spacing and to evaluate the relationship of ground speed... A. Sharda, S. Badua, I. Ciampitti, R. Strasser, T.W. Griffin

7. Analytical and Technological Advancements for Soybean Quality Mapping and Economic Differentiation

In the past, measuring soybean protein and oil content required the collection of soybean seed samples and laboratory analyses. Modern on-the-go near-infrared (NIR) sensing technologies during the harvest and proximal remote sensing (aerial and satellite imagery) before harvest time can be used to provide an early estimate of seed quality levels, benchmark in-season predictions with at-harvest final seed quality and enable seed differentiation for farmers leading to better marketing strategies. Recent... A. Prestholt, C. Hernandez, I. Ciampitti , P. Kyveryga

8. Developing a Decision Support Model for Informing N Fertilization in Corn

Assessing crop nitrogen (N) status is crucial for optimizing the application of N fertilizers in corn. The Critical Nitrogen Dilution Curve (CNDC) stands as a fundamental model supporting diagnostic tool for identifying the corn nitrogen (N) status. However, there is a need for efficient, non-destructive methods to estimate the crop N status. The objective of this study was to evaluate the potential of three handheld sensors: SPAD, LI-600, and Green Seeker to diagnose corn N deficiencies at early... L. Lemes bosche, I. Ciampitti

9. Algorithm to Estimate Sorghum Grain Number from Panicles Using Images Collected with a Smartphone at Field-scale

An estimation of on-farm yield before harvest is important to assist farmers on deciding additional input use, time to harvest, and options for end uses of the harvestable product. However, obtaining a rapid assessment of on-farm yield can be challenging, even more for sorghum (Sorghum bicolor L.) crop due to the complexity for accounting for the grain number at field-scale. One alternative to reduce labor is to develop a rapid assessment method employing computer vision and artificial intelligence... G.N. Nocera santiago, P. Cisdeli magalhães, I. Ciampitti, L. Marziotte

10. Assessing Soybean Water Stress Patterns and ENSO Occurrence in Southern Brazil: an in Silico Approach

Water stress (WS) is one of the most important abiotic stresses worldwide, responsible for crop yield penalties and impacting food supply. The frequency and intensity of weather stresses are relevant to delimitating agricultural regions. In addition, El Nino Southern Oscillation (ENSO) has been employed to forecast the occurrence of seasonal WS. Lastly, planting date and cultivar maturity selection are key management strategies for boosting soybean (Glycine max (L.) Merr.) yield... A. Carcedo, L.F. Antunes de almeida, T. Horbe, G. Corassa, L.P. Pott, I. Ciampitti, G.D. Hintz, T. Hefley, R.A. Schwalbert, V. Prasad

Showing 1 to 10 of 19 entries