Authors
Filter results17 paper(s) found. |
---|
1. Management Of Remote Imagery For Precision AgricultureSatellite and airborne remotely sensed images cover large areas, which normally include dozens of agricultural plots. Agricultural operations such as sowing, fertilization, and pesticide applications are designed for the whole plot area, i.e. 5 to 20 ha, or through precision agriculture. This takes into account the spatial variability of biotic and of abiotic factors and uses diverse technologies to apply inputs at variable rates, fitted to the needs of each small defined area, i.e. 25 to 200... L. Garcia-torres, D. Gomez-candon, J.J. Caballero-novella, J.M. Pe, M. Jurado-exp, I. Castillejo-gonz, A. Garc, F. Lopez-granados, L. Prassack |
2. Applying Conventional Vegetation Vigor Indices To UAS-Derived Orthomosaics: Issues And ConsiderationsIn recent years, unmanned airborne systems (UAS) have gained a lot of interest for their potential use in precision agriculture. While the imagery from near-infrared (NIR) enabled off-the-shelf cameras included in UAS can be directly used to facilitate crop scouting, the application in quantitative analyses remains cumbersome. The ultimate goal is to calculate (nitrogen) prescription maps from vegetation indices obtained from UAS imagery, but two main issues hamper this workflow: (1) the... J. Quaderer, J. Coonen, A. Lange, K. Pauly |
3. Weed Seedlings Detection In Winter Cereals For Site-Specific Control: Use Of UAV Imagery To Overcome The ChallengeWeed management is an important part of the investments in crop production. Cost of herbicides accounts for approximately 40% of the cost of all the chemicals applied to agricultural land in Europe. In order to increase the profitability of crop production and to reduce the environmental concerns related to chemicals application, it is needed to develop site-specific weed management strategies in which herbicides are only applied in the crop zones were weeds spread. Moreover, these... J. Peña, A. De castro, F. López-granados, J. Torres-sánchez |
4. Towards Calibrated Vegetation Indices from UAS-derived OrthomosaicsCrop advisors and farmers increasingly use drone data as part of their decision making. However, the vast majority of UAS-based vegetation mapping services support only the calculation of a relative NDVI derived from compressed JPEG pixel values and do not include the possibility to include more complex aspects like soil correction. In our ICPA12 contribution, we demonstrated the effects and consequences of the above shortcomings. Here, we present the stepwise development of a solution to ensure... K. Pauly |
5. Evaluation of Image Acquisition Parameters and Data Extraction Methods on Plant Height Estimation with UAS ImageryAerial imagery from unmanned aircraft systems (UASs) has been increasingly used for field phenotyping and precision agriculture. Plant height is one important crop growth parameter that has been estimated from 3D point clouds and digital surface models (DSMs) derived from UAS-based aerial imagery. However, many factors can affect the accuracy of aerial plant height estimation. This study examined the effects of image overlap, pixel resolution, and data extraction methods on estimation... C. Yang, C. Suh, W. Guo, H. Zhao, J. Zhang, R. Eyster |
6. Cotton Boll Detection and Yield Estimation Using UAS Lidar Data and RGB ImageCotton boll distribution is a critical phenotypic trait that represents the plant's response to its environment. Accurate quantification of boll distribution provides valuable information for breeding cultivars with high yield and fiber quality. Manual methods for boll mapping are time-consuming and labor-intensive. We evaluated the application of Lidar point cloud and RGB image data in boll detection and distribution and yield estimation. Lidar data was acquired at 15 m using a DJI Matrice... Z. Lin, W. Guo, N. Gill |
7. Integration of Unmanned Aerial Systems Images and Yield Monitor in Improving Cotton Yield EstimationThe yield monitor is one of the most adopted precision agriculture technologies because it generates dense yield data to quantify the spatial variability of crop yield as a basis for site-specific management. However, yield monitor data has various errors that prevent proper interpretation and precise field management. The objective of this study was to evaluate the application of unmanned aerial systems (UAS) images in improving cotton yield monitor data. The study was conducted in a dryland... H. Gu, W. Guo |
8. Evaluation of Unmanned Aerial Vehicle Images in Estimating Cotton Nitrogen ContentEstimating crop nitrogen content is a critical step for optimizing nitrogen fertilizer application. The objective of this study was to evaluate the application of UAV images in estimating cotton (Gossypium hirsutum L.) N content. This study was conducted in a dryland cotton field in Garza County, Texas, in 2020. The experiment was implemented as a randomized complete block design with three N rates of 0, 34, and 67 kg N ha-1. A RedEdge multispectral sensor was used to acquire... R. Karn, H. Gu, O. Adedeji, W. Guo |
9. Modeling Spatial and Temporal Variability of Cotton Yield Using DSSAT for Decision Support in Precision AgricultureThe quantification of spatial and temporal variability of cotton yield provides critical information for optimizing resources, especially water. The Southern High Plains (SHP) of Texas is a major cotton (Gossypium hirsutum L.) production region with diminishing water supply. The objective of this study was to predict cotton yield variability using soil properties and topographic attributes. The DSSAT CROPGRO-Cotton model was used to simulate cotton growth, development and yield using... B.P. Ghimire, O. Adedeji, Z. Lin, W. Guo |
10. Estimation of Cotton Biomass Using Unmanned Aerial Systems and Satellite-based Remote SensingSatellite and unmanned aerial system (UAS) images are effective in monitoring crop growth at various spatial, temporal, and spectral scales. The objective of the study was to estimate cotton biomass at different growth stages using vegetation indices (VIs) derived from UAS and satellite images. This research was conducted in a cotton field in Hale County, Texas, in 2021. Data collected include 54 plant samples at different locations for three dates of the growing season. Multispectral images from... O.I. Adedeji, B.P. Ghimire, H. Gu, R. Karn, Z. Lin, W. Guo |