Login

Proceedings

Find matching any: Reset
Liaghat, S
Add filter to result:
Authors
Liaghat, S
Mansor, S
Shafri, H
Meon, S
Ehsani, R
Azam, S
Noh, N
Liaghat, S
Balasundram, S.K
Topics
Precision Horticulture
Remote Sensing Applications in Precision Agriculture
Type
Poster
Year
2012
2010
Home » Authors » Results

Authors

Filter results2 paper(s) found.

1. Artificial Neural Network Techniques To Predict Orange Spotting Disease In Oil Palm

       Large-Scale oil palm plantations require timely detection of disease symptoms to enable effective intervention. Orange spotting is an emerging disease that significantly reduces oil palm productivity. Remote sensing technology offers the means to detect crop biophysical properties, including crop stress, in a cost effective and non destructive manner. In this study, different portable sensors were used to measure spectral reflectance and chlorophyll... S. Liaghat, S.K. Balasundram

2. Early Detection of Oil Palm Fungal Disease Infestation Using A Mid-Infrared Spectroscopy Technique

Basal stem rot (BSR) caused by Ganoderma boninense is known as the most destructive disease of oil palm plantations in Southeast Asia. Ganoderma could potentially reduce the market share of palm oil for Malaysia. Currently Malaysia produces about 50% of the world’s supply of palm oil. Early, accurate, and non-destructive diagnosis of Ganoderma fungal infection is critical for management of this disease. Early disease management of Ganoderma could also prevent great losses in production and... S. Liaghat, S. Mansor, H. Shafri, S. Meon, R. Ehsani, S. Azam, N. Noh