Authors
Filter results11 paper(s) found. |
---|
1. Assessment Of Field Crops Leaf Area Index By The Red-edge Inflection Point Derived From Venus BandsThe red-edge region of leaves spectrum (700-800 nm) corresponds to the spectral region that connects the chlorophyll absorption in the red and the amplified reflectance caused by the leaf structure in the near infrared (NIR) parts of the spectrum. At the canopy level, the inflection point of the red-edge slope is influenced by the plant’s condition that is related to several properties, including Leaf Area Index (LAI) and plant nutritional status.... I. Herrmann, A. Pimstein, A. Karnieli, Y. Cohen, V. Alchanatis , D.J. Bonfil |
2. Hyperspectral Imagery for the Detection of Nitrogen Stress in Potato for In-season Management... T.J. Nigon, C. Rosen, D. Mulla, Y. Cohen, V. Alchanatis, R. Rud |
3. Evaluating Water Status in Potato Fields Using Combined Information from RGB and Thermal Aerial ImagesPotato yield and quality are highly dependent on an adequate supply of water. In this study the combined information from RGB and thermal aerial images to evaluate... Y. Cohen, V. Alchanatis, B. Heuer, H. Lemcoff, M. Sprintsin, C. Rosen, D. Mulla, T. Nigon, Z. Dar, A. Cohen, A. Levi, R. Brikman, T. Markovits, R. Rud |
4. A Method for Combining Spatial and Hyperspectral Information for Delineation of Homogenous Management ZonesHyperspectral (HS) remote sensing is a constantly developing field. New remote sensing applications of different fields constantly appear. The possibility of acquisition information about an object without physical contact is spanning new opportunities in many fields and for precision agricultural in particular. These opportunities demand constant improvement and development of new analysis approaches and algorithms,... Y. Cohen, V. Alchanatis, O. Levi, S. Cohen |
5. Automatic Detection And Mapping Of Irrigation System Failures Using Remotely Sensed Canopy Temperature And Image ProcessingToday there is no systematic way to identify and locate failures of irrigation systems mainly because of the labor costs associated with locating the failures. The general aim of this study was to develop an airborne thermal imaging system for semi - automatic monitoring and mapping of irrigation system failures, specifically, of leaks and clogs. Initially, leaks and clogs were simulated by setting controlled trials in table grapes vineyards and olive groves. Airborne thermal... V. Alchanatis, Y. Cohen, M. Sprinstin, A. Cohen, I. Zipori, A. Dag, A. Naor |
6. Are Thermal Images Adequate For Irrigation Management?Thermal crop sensing technologies have potential as tools for monitoring and mapping crop water status, improving water use efficiency and precisely managing irrigation. As thermal sensors and imagers became more affordable, various platforms were examined to allow for canopy- and field-scale acquisitions of canopy temperature and to extract maps of water status variability. Various canopy temperature statistics and crop water stress index (CWSI) were used to estimate water status... O. Rosenberg, V. Alchanatis, Y. Saranga, A. Bosak, Y. Cohen |
7. A Photogrammetry-based Image Registration Method for Multi-camera SystemsIn precision agriculture, yield maps are important for farmers to make plans. Farmers will have a better management of the farm if early yield map can be created. In Florida, citrus is a very important agricultural product. To predict citrus production, fruit detection method has to be developed. Ideally, the earlier the prediction can be done the better management plan can be made. Thus, fruit detection before their mature stage is expected. This study aims to develop a thermal-visible camera... H. Gan, W. Lee, V. Alchanatis |
8. An Active Thermography Method for Immature Citrus Fruit DetectionFast and accurate methods of immature citrus fruit detection are critical to building early yield mapping systems. Previously, machine vision methods based on color images were used in many studies for citrus fruit detection. Despite the high resolutions of most color images, problems such as the color similarity between fruit and leaves, and various illumination conditions prevented those studies from achieving high accuracies. This project explored a novel method for immature citrus fruit detection... H. Gan, W.S. Lee, V. Alchanatis, A. Abd-elrahman |
9. Comparison of Canopy Extraction Methods from UAV Thermal Images for Temperature Mapping: a Case Study from a Peach OrchardCanopy extraction using thermal images significantly affects temperature mapping and crop water status estimation. This study aimed to compare several canopy extraction methodologies by utilizing a large database of UAV thermal images from a precision irrigation trial in a peach orchard. Canopy extraction using thermal images can be attained by purely statistical analysis (S), a combination of statistical and spatial analyses (SS), or by synchronizing thermal and RGB images, following RGB statistical... L. Katz, A. Ben-gal, I. Litaor, A. Naor, A. Peeters, E. Goldshtein, V. Alchanatis, Y. Cohen |
10. Comparing Hyperspectral and Thermal UAV-borne Imagery for Relative Water Content Estimation in Field-grown SesameSesame (Sesamum indicum) is an irrigated oilseed crop, and studies on its water content estimation are sparred. Unmanned aerial vehicle (UAV)-borne imageries using spectral reflectance as well as thermal emittance for crops are an ample source of high throughput information about their physiological and chemical traits. Though several studies have dealt with thermal emittance to assess the crop water content, evaluating its relation to the plant’s solar reflectance is limitedly... M. Sahoo, R. Tarshish, V. Alchanatis , I. Herrmann |
11. Data-driven Agriculture and Sustainable Farming: Friends or Foes?Sustainability in our food and fiber agriculture systems is inherently knowledge intensive. It is more likely to be achieved by using all the knowledge, technology, and resources available, including data-driven agricultural technology and precision agriculture methods, than by relying entirely on human powers of observation, analysis, and memory following practical experience. Data collected by sensors and digested by artificial intelligence (AI) can help farmers learn about synergies... O. Rozenstein, Y. Cohen, V. Alchanatis , K. Behrendt, D.J. Bonfil, G. Eshel, A. Harari, W.E. Harris, I. Klapp, Y. Laor, R. Linker, T. Paz-kagan, S. Peets, M.S. Rutter, Y. Salzer, J. Lowenberg-deboer |