Login

Proceedings

Find matching any: Reset
Decision Support Systems
Add filter to result:
Authors
Abonyi, J
Adamchuk, V
Ahmed, M
Al-Busaidi, A
Amaral, L.R
Archontoulis, S
Batchelor, W.D
Bazzi, C.L
Bazzi, C.L
Bazzi, C.L
Beeri, O
Benő, A
Betzek, N.M
Bouroubi, Y
Callegari, D
Campos, L.B
Colley III, R
Cugnasca, C.E
Dong, R
Esau, K
Fajardo, M
Farooque, A
Fulton, J
Gavioli, A
Jayasuriya, H
Kaur, G
Khot, L
Kocsis, M
Kross, A
Lacroix, R
Lapen, D
Lee, J
Liakos, V
Liang, X
Magalhaes, P.G
Martello, M
May-tal, S
McLendon, A
McNairn, H
Miao, Y
Michelon, G.K
Mostaço, G.M
Mulla, D.J
Pagani, A
Perry, C
Port, K
Porter, W
Puntel, L
Quirós, J.J
Raz, J
Rojo, F
Rud, R
Rudy, H
Sanches, G.M
Schenatto, K
Schenatto, K
Schumann, A
Shinde, S
Sisák, I
Souza, E.G
Souza, I.R
Sunohara, M
Szabó, K
Tremblay, N
Tucker, M
Upadhyaya, S
Valente, I.Q
Vellidis, G
Wang, X
Whelan, B
Zaman, Q
de Menezes, P.L
van Vliet, L
Topics
Decision Support Systems
Type
Poster
Oral
Year
2018
Home » Topics » Results

Topics

Filter results16 paper(s) found.

1. Effective Use of a Debris Cleaning Brush for Mechanical Wild Blueberry Harvesting

Wild blueberries are an important horticultural crop native to northeastern North America. Management of wild blueberry fields has improved over the past decade causing increased plant density and leaf foliage. The majority of wild blueberry fields are picked mechanically using tractor mounted harvesters with 16 rotating rakes that gently comb through the plants. The extra foliage has made it more difficult for the cleaning brush to remove unwanted debris (leaf, stems, weeds, etc.) from the p... K. Esau, Q. Zaman, A. Farooque, A. Schumann

2. Three Years of On-Farm Evaluation of Dynamic Variable Rate Irrigation: What Have We Learned?

This paper will present a dynamic Variable Rate Irrigation System developed by the University of Georgia. The system consists of the EZZone management zone delineation tool, the UGA Smart Sensor Array (UGA SSA) and an irrigation scheduling decision support tool. An experiment was conducted in 2015, 2016 and 2017 in two different peanut fields to evaluate the performance of using the UGA SSA to dynamically schedule Variable Rate Irrigation (VRI). For comparison reasons strips were designed wit... V. Liakos, W. Porter, X. Liang, M. Tucker, A. Mclendon, C. Perry, G. Vellidis

3. Reverse Modelling of Yield-Influencing Soil Variables in Case of Few Soil Data

Our hypothesis was that simple models can be applied to predict yield by using only those yield data which spatially coincide with the soil data and the remaining yield data and the models can be used to test different sampling and interpolation approaches commonly applied in precision agriculture and to better predict soil variables at not observed locations. Three strategies for composite sample collection were compared in our study. Point samples were taken 1.) along lines within homogenou... I. Sisák, A. Benő, K. Szabó, M. Kocsis, J. Abonyi

4. Optimized Soil Sampling Location in Management Zones Based on Apparent Electrical Conductivity and Landscape Attributes

One of the limiting factors to characterize the soil spatial variability is the need for a dense soil sampling, which prevents the mapping due to the high demand of time and costs. A technique that minimizes the number of samples needed is the use of maps that have prior information on the spatial variability of the soil, allowing the identification of representative sampling points in the field. Management Zones (MZs), a sub-area delineated in the field, where there is relative homogeneity i... G.K. Michelon, G.M. Sanches, I.Q. Valente, C.L. Bazzi, P.L. De menezes, L.R. Amaral, P.G. Magalhaes

5. Optimal Placement of Proximal Sensors for Precision Irrigation in Tree Crops

In agriculture, use of sensors and controllers to apply only the quantity of water required, where and when it is needed (i.e., precision irrigation), is growing in importance. The goal of this study was to generate relatively homogeneous management zones and determine optimal placement of just a few sensors within each management zone so that reliable estimation of plant water status could be obtained to implement precision irrigation in a 2.0 ha almond orchard located in California, USA. Fi... C.L. Bazzi, K. Schenatto, S. Upadhyaya, F. Rojo

6. Prediction of Corn Economic Optimum Nitrogen Rate in Argentina

Static (i.e. texture and soil depth) and dynamic (i.e. soil water, temperature) factors play a role in determining field or subfield economically optimal N rates (EONR). We used 50 nitrogen (N) trials from Argentina at contrasting landscape positions and soil types, various soil-crop measurements from 2012 to 2017, and statistical techniques to address the following objectives: a) characterize corn yield and EONR variability across a multi-landscape-year study in central west Buenos Aire... L. Puntel, A. Pagani, S. Archontoulis

7. Field Test of a Satellite-Based Model for Irrigation Scheduling in Cotton

Cotton irrigation in Israel began in the mid-1950s. It is based on an irrigation protocol developed over dozens of years of cotton farming in Israel, and proved to provide among the world's best cotton yield results. In this experiment, we examined the use of an irrigation recommendation system that is based on satellite imagery and hyper-local meteorological data, "Manna treatment", compared to the common irrigation protocols in Israel, which use a crop coefficient (Kc) table a... O. Beeri, S. May-tal, J. Raz, R. Rud

8. Variable Selection and Data Clustering Methods for Agricultural Management Zones Delineation

Delineation of agricultural management zones (MZs) is the delimitation, within a field, of a number of sub-areas with high internal similarity in the topographic, soil and/or crop characteristics. This approach can contribute significantly to enable precision agriculture (PA) benefits for a larger number of producers, mainly due to the possibility of reducing costs related to the field management. Two fundamental tasks for the delineation of MZs are the variable selection and the cluster anal... A. Gavioli, E.G. Souza, C.L. Bazzi, N.M. Betzek, K. Schenatto

9. Field Grown Apple Nursery Tree Plant Counting Based on Small UAS Imagery Derived Elevation Maps

In recent years, growers in the state are transitioning to new high yielding, pest and disease resistant cultivars. Such transition has created high demand for new tree fruit cultivars. Nursery growers have committed their incoming production of the next few years to meet such high demands. Though an opportunity, tree fruit nursery growers must grow and keep the pre-sold quantity of plants to supply the amount promised to the customers. Moreover, to keep the production economical amidst risin... M. Martello, J.J. Quirós, L. Khot

10. Optimising Nitrogen Use in Cereal Crops Using Site-Specific Management Classes and Crop Reflectance Sensors

The relative cost of Nitrogen (N) fertilisers in a cropping input budget, the 33% Nitrogen use efficiency (NUE) seen in global cereal grain production and the potential environmental costs of over-application are leading to changes in the application rates and timing of N fertiliser. Precision agriculture (PA) provides tools for producers to achieve greater synchrony between N supply and crop N demand. To help achieve these goals this research has explored the use of management classes derive... B. Whelan, M. Fajardo

Showing 1 to 10 of 16 entries