Login

Proceedings

Find matching any: Reset
Geospatial Data
Add filter to result:
Authors
Adamchuk, V
Alderman, P.D
Bergheim, R
Berzins, R
Charvat Jr., K
Charvat, K
Csenki, S
Dafnaki, D
Dash, M
Denton, A.M
Dutilleul, P
Evers, B
Flores, P
Floyd, W
Fritz, A
Garza, C
Harkin, S.J
Hettiarachchi, G
Hoffmann Silva Karp, F
Hokanson, G.E
Hong, S
Horakova, S
Jansky, T
Kubickova, H
Lang, V
Langovskis, D
Macura, J
Melnitchouck, A
Ortega, R.A
Ortega, R.A
Pasquel, D
Poblete, H.P
Poblete, H.P
Poland, J
Rathee, G
Rekhi, M
Roux, S
Saxena, A
Sielenkemper, M
Smith, A.P
Snevajs, H
Straw, C
Taylor, J.A
Tisseyre, B
Tóth, G
Verma, A.P
Watkins, K
Welch, S
Williams, D
Wyatt, B
Zadrazil, F
Topics
Geospatial Data
Type
Oral
Poster
Year
2022
Home » Topics » Results

Topics

Filter results12 paper(s) found.

1. Map Whiteboard As Collaboration Tool for Smart Farming Advisory Services

Precision agriculture, a branch of smart farming, holds great promise for modernization of European agriculture both in terms of environmental sustainability and economic outlook.  The vast data archives made available through Copernicus and related infrastructures, combined with a low entry threshold into the domain of AI-technologies has made it possible, if not outright easy, to make meaningful predictions that divides  individual agricultural fields into zones where variable rat... K. Charvat, R. Berzins, R. Bergheim, F. Zadrazil, J. Macura, D. Langovskis, H. Snevajs, H. Kubickova, S. Horakova, K. Charvat jr.

2. Comparison of Different Aspatial and Spatial Indicators to Assess Performance of Spatialized Crop Models at Different Within-field Scales

Most current crop models are point-based models, i.e. they simulate agronomic variables on a spatial footprint on which they were initially designed (e.g. plant, field, region scale). To assess their performances, many indicators based on the comparison of estimated vs observed data, can be used such as root mean square error (RMSE) or Willmott index of agreement (D-index) among others. However, shifting model use from a strategic objective to tactical in-season management is becoming a signi... D. Pasquel, S. Roux, B. Tisseyre, J.A. Taylor

3. Investigating Spatial Relationship of Apparent Electrical Conductivity with Turfgrass and Soil Characteristics in Sand-capped Golf Course Fairways

Turfgrass quality decreases when grown on fine textured soils that are irrigated with poor quality water. As a result, sand-capping (i.e., a sand layer above existing native soil) is now considered during golf course fairway renovation and construction. Mapping spatial variability of soil apparent electrical conductivity (ECa) has recently been suggested to have applications for precision turfgrass management (PTM) in native soil fairways, but sand-capped fairways have received les... C. Straw, B. Wyatt, A.P. Smith, K. Watkins, S. Hong, W. Floyd, D. Williams, C. Garza, T. Jansky

4. Scaling Up Window-based Regression for Crop-row Detection

Crop-row detection is a central element of weed detection and agricultural image processing tasks. With the increased availability of high-resolution imagery, a precise locating of crop rows is becoming practical in the sense that the necessary data are commonly available. However, conventional image processing techniques often fail to scale up to the data volumes and processing time expectations. We present an approach that computes regression lines ... A.M. Denton, G.E. Hokanson, P. Flores

5. Comparison and Validation of Different Soil Survey Techniques to Support a Precision Agricultural System

The data need of precision agriculture has resulted in an intensive increase in the number of modern soil survey equipment and methods available for farmers and consultants. In many cases these survey methods cannot provide accurate information under the used environmental conditions. On a 36 hectare experimental field, several methods have been compared to identify the ones which can support the PA system the best. The methods included contact and non contact soil scanning, yield mapping, hi... V. Lang, G. Tóth, S. Csenki, D. Dafnaki

6. Optimization of Batch Processing of High-density Anisotropic Distributed Proximal Soil Sensing Data for Precision Agriculture Purposes

The amount of spatial data collected in agricultural fields has been increasing over the last decade. Advances in computer processing capacity have resulted in data analytics and artificial intelligence becoming hot topics in agriculture. Nevertheless, the proper processing of spatial data is often neglected, and the evaluation of methods that efficiently process agricultural spatial data remains limited. Yield monitor data is a good example of a well-established methodology for data processi... F. Hoffmann silva karp, V. Adamchuk, A. Melnitchouck, P. Dutilleul

7. Using On-the-Go Soil Sensors to Assess Spatial Variability within the KS Wheat Breeding Program

In plant breeding the impacts of genotype by environment interactions and the challenges to quantify these interactions has long been recognized. Both macro and microenvironment variations in precipitation, temperature and soil nutrient availability have been shown to impact breeder selections. Traditionally, breeders mitigate these interactions by evaluating genotype performance across varying environments over multiple years. However, limitations in labor, equipment and seed availably can l... B. Evers, M. Rekhi, G. Hettiarachchi, S. Welch, A. Fritz, P.D. Alderman, J. Poland

8. Changes in Soil Quality when Building Ridges for Fruit Plantation

Many fruit plantations are usually performed in ridges for various reasons including, escaping from a clay horizon, improving overall soil quality and drainage, among others. Normally ridges are built using the surface horizons, producing a mixture of soils layers, and therefore changing the quality of the soil at the rooting zone. We were interested in studying the changes in soil properties when building ridges in a flat alluvial soil that was planted with avocado. A det... H.P. Poblete, R.A. Ortega

9. Yield Estimation for Avocado Using Systematic Sampling Techniques

Avocado is a high value crop ranking fourth among the planted fruit species in Chile with more than 32,000 ha. Yield estimation is an important challenge in avocado due to its phenology, the size of the tree, and to the large variability usually observed within the orchards. Due to the practical difficulties to sample the trees we use the following approach: 1) establish a systematic, non-aligned grid with > 20 sampling points (trees)/field, 2) previous to harvest, and ... H.P. Poblete, R.A. Ortega

10. Cloud Correction of Sentinel-2 NDVI Using S2cloudless Package

Optical satellite-derived Normalized Difference Vegetation Index (NDVI) is by far the most commonly used vegetation index value for crop monitoring. However, it is quite sensitive to the cloud, and cloud shadows and significantly decreases its usability, especially in agricultural applications. Therefore, an accurate and reliable cloud correction method is mandatory for its effective application. To address this issue, we have developed an approach to correct the NDVI values of each and every... A. Saxena, M. Dash, A.P. Verma

11. Next in Precision Agriculture: Detecting and Correcting Pixels with Machinery Track Line Within Farms

With more satellites orbiting the earth, monitoring of fields using satellite data has become easier and ubiquitous. Frequent observations of a field can provide vital cues about field health and management practices. However, farm analytical statistics derived from such datasets often need modification to create practical applications. This paper focuses on the detection and removal of field machinery track line pixels to reduce their effect on satellite-based agronomic recommendation and pr... G. Rathee, M. Sielenkemper

12. Automated Geometrical Field Boundary Delineation Algorithm for Adjacent Job Sites

Establishing farmland geometric boundaries is a critical component of any assistive technology, designed towards the automation of mechanized farming systems. Observing farmland boundaries enables farmers and farm machinery contractors to determine; seed purchase orders, fertiliser application rate, and crop yields. Farmers must supply acreage measurements to regulatory bodies, who will use the geometric data to develop environmental policies and allocate farm subsidies appropriately. Agricu... S.J. Harkin