Login

Proceedings

Find matching any: Reset
Streeter, C.R
Solie, J.B
Santos, R.T
SANZ, R
Sumpf, B
Saraiva, A.M
Add filter to result:
Authors
Arno, J
DEL MORAL, I
Escolà, A
Company, J
MARTÍNEZ-CASASNOVAS, J.A
MASIP, J
SANZ, R
ROSELL, J.R
Saraiva, A.M
Santos, R.T
Molin, J.P
Zhang, X
Streeter, C.R
Kim, H
Olsen, D.R
Moss, J.Q
Bell, G.E
Solie, J.B
Stone, M.L
Martin, D.L
Payton, M.E
Gebbers, R
Dworak, V
Mahns, B
Weltzien, C
Büchele, D
Gornushkin, I
Mailwald, M
Ostermann, M
Rühlmann, M
Schmid, T
Maiwald, M
Sumpf, B
Rühlmann, J
Bourouah, M
Scheithauer, H
Heil, K
Heggemann, T
Leenen, M
Pätzold, S
Welp, G
Chudy, T
Mizgirev, A
Wagner, P
Beitz, T
Kumke, M
Riebe, D
Kersebaum, C
Wallor, E
Topics
Proximal Sensing in Precision Agriculture
Food Security and Precision Agriculture
Remote Sensing Applications in Precision Agriculture
Precision Horticulture
Precision Nutrient Management
Type
Poster
Oral
Year
2012
2010
2016
Home » Authors » Results

Authors

Filter results5 paper(s) found.

1. Near Real-time Meter-resolution Airborne Imagery For Precision Agriculture: Aerocam

Precision agriculture often relies on high resolution imagery to delineate the variability within a field. Airborne Environmental Research Observational Camera (AEROCam) was designed to meet the needs of agriculture producers, ranchers, and researchers, who require meter-solution imagery in a near real-time environment for rapid decision support. AEROCam was developed and operated through a unique collaboration... X. Zhang, C.R. Streeter, H. Kim, D.R. Olsen

2. Development Of A Precision Sensing Sprayer For The Application Of Nitrogen Fertilizer To Turfgrass

  Normalized difference vegetation index (NDVI) may be very useful for turfgrass managers to measure turf quality and obtain an indirect measurement of turf N status. The objective of this research was to develop a Nitrogen Fertilization Optimization Algorithm (NFOA) for use in a turfgrass variable rate N applicator on bermudagrass [Cynodon dactylon (L.) Pers] fairways and creeping bentgrass (Agrostis stolonifera L.) greens in Oklahoma. Plots (0.9 X 1.5 m)... J.Q. Moss, G.E. Bell, J.B. Solie, M.L. Stone, D.L. Martin, M.E. Payton

3. Mapping the Leaf Area Index In Vineyard Using a Ground-Based LIDAR Scanner

The leaf area index (LAI) is defined as the one-sided leaf area per unit ground area and is probably the most widely used index to characterize grapevine vigour. However, direct LAI measurement requires the use of destructive leaves sampling methods which are costly and time-consuming and so are other indirect methods. Faced with these techniques, vineyard leaf area can be indirectly estimated using ground-based LIDAR sensors that scan the vines and get information about the geometry and/or structure... J. Arno, I. Del moral, A. Escolà, J. Company, J.A. MartÍnez-casasnovas, J. Masip, R. Sanz, J.R. Rosell

4. Comparison of Algorithms for Delineating Management Zones

... A.M. Saraiva, R.T. Santos, J.P. Molin

5. Integrated Approach to Site-specific Soil Fertility Management

In precision agriculture the lack of affordable methods for mapping relevant soil attributes is a funda­mental problem. It restricts the development and application of advanced models and algorithms for decision making. The project “I4S - Integrated System for Site-Specific Soil Fertility Management” combines new sensing technologies with dynamic soil-crop models and decision support systems. Using sensors with different measurement principles improves the estimation of soil fertility... R. Gebbers, V. Dworak, B. Mahns, C. Weltzien, D. Büchele, I. Gornushkin, M. Mailwald, M. Ostermann, M. Rühlmann, T. Schmid, M. Maiwald, B. Sumpf, J. Rühlmann, M. Bourouah, H. Scheithauer, K. Heil, T. Heggemann, M. Leenen, S. Pätzold, G. Welp, T. Chudy, A. Mizgirev, P. Wagner, T. Beitz, M. Kumke, D. Riebe, C. Kersebaum, E. Wallor