Authors
Filter results12 paper(s) found. |
---|
1. Spatial-temporal Evaluation of Plant Phenotypic Traits Via Imagery Collected by Unmanned Aerial Systems (UAS)Unmanned aerial systems (UAS) and a stereovision approach were implemented to generate a 3D reconstruction of the top of the canopy. The 3D reconstruction or CSM (crop surface model) was utilized to evaluate biophysical parameters for both spatial- and temporal-scales. The main goal of the project was to evaluate sUAVs technology to assist plant height and biomass estimation. The main outcome of this process was to utilize CSMs to gain insights in the spatial-temporal dynamic of plants within... S. Varela, G. Balboa, V. Prasad, T. Griffin, I. Ciampitti, A. Ferguson |
2. Spatial-temporal Evaluation of Plant Phenotypic Traits Via Imagery Collected by Unmanned Aerial Systems (UAS)Unmanned aerial systems (UAS) and a stereovision approach were implemented to generate a 3D reconstruction of the top of the canopy. The 3D reconstruction or CSM (crop surface model) was utilized to evaluate biophysical parameters for both spatial- and temporal-scales. The main goal of the project was to evaluate sUAVs technology to assist plant height and biomass estimation. The main outcome of this process was to utilize CSMs to gain insights in the spatial-temporal dynamic of plants within... S. Varela, G. Balboa, V. Prasad, T. Griffin, I. Ciampitti, A. Ferguson |
3. On Farm Studies to Determine Seeding Rate in CornSeeding rate (SDR) is one of the most critical production practices impacting productivity and economic return for corn (Zea mays L.) By changing SDRs in different zones within a field, herein termed as site-specific management, better economic results can be produced as the outcome of reducing SDRs in low productivity areas and increasing SDRs under high-yielding environments, relative to the uniform SDR management performed by the producer. The aim of this study was to analyze yield responses... G. Balboa, S. Varela, I. Ciampitti, S. Duncan, T. Maxwell, D. Shoups, A. Sharda |
4. How Digital is Agriculture in South America? Adoption and LimitationsA rapidly growing population in a context of land and water scarcity, and climate change has driven an increase in healthy, nutritious, and affordable food demand while maintaining the current cropping area. Digital agriculture (DA) can contribute solutions to meet the demands in an efficient and sustainable way. South America (SA) is one of the main grain and protein producers in the world but the status of DA in the region is unknown. This article presents the results from a systematic review... G. Balboa, L. Puntel, R. Melchiori, R. Ortega, G. Tiscornia, E. Bolfe, A. Roel, F. Scaramuzza, S. Best, A. Berger, D. Hansel, D. Palacios |
5. Evaluation of Nitrogen Recommendation Tools for Winter Wheat in NebraskaAttaining both high yield and high nitrogen (N) use efficiency (NUE) simultaneously remains a current research challenge in crop production. Digital ag technologies for site-specific N management have been demonstrated to improve NUE. This is due to the ability of digital technologies to account for the spatial and temporal distribution of crop N demand and available soil N in the field which varies greatly according to... J. Cesario pereira pinto, L. Thompson, N. Mueller, T. Mieno, G. Balboa, L. Puntel |
6. Overcoming Educational Barriers for Precision Agriculture Adoption: a University Diploma in Precision Agriculture in ArgentinaThe lack of educational programs in Precision Agriculture (PA) has been reported as one of the barriers for adoption. Our goal was to improve professional competence in PA through education in crop variability, management, and effective practices of PA in real cases. In the last 20 years different efforts has been made in Argentina to increase adoption of PA. The Universidad Nacional de Rio Cuarto (UNRC) launched in 2021 the first University Diploma in PA, a 9-month program to train agronomist... G. Balboa, A. Degioanni, R. Bongiovanni, R. Melchiori, C. Cerliani, F. Scaramuzza, M. Bongiovanni, J. Gonzalez, M. Balzarini, H. Videla, S. Amin, G. Esposito |
7. Site-specific Evaluation of Sensor-based Winter Wheat Nitrogen Tools Via On-farm ResearchCrop producers face the challenge of optimizing high yields and nitrogen use efficiency (NUE) in their agricultural practices. Enhancing NUE has been demonstrated by adopting digital agricultural technologies for site-specific nitrogen (N) management, such as remote-sensing based N recommendations for winter wheat. However, winter wheat fields are often uniformly fertilized, disregarding the inherent variability within the fields. Thus, an on-farm evaluation of sensor-based N tools is needed to... J. Cesario pinto, L. Thompson, N. Mueller, T. Mieno, L. Puntel, P. Paccioretti, G. Balboa |
8. Barriers and Adoption of Precision Ag Tehcnologies for Nitrogen Management NebraskaA statewide survey of Nebraska farmers shows that they determine the N rate based on soil lab recommendations (82%), intuition, traditional rate, and own experience (67%). The adoption of dynamic site-specific models (23%), and sensor-based algorithms (11%) remains low. The survey identified the main barriers to the adoption of these N management technologies. ... G. Balboa, L. Puntel, L. Thompson, P. Paccioretti |
9. Site Specific Evaluation of Dynamic Nitrogen Recommendation ToolsManagement tools are a potential solution for increased profit and N use efficiency (NUE) in corn production. Most previous studies evaluating these tools used small plot research which does not accurately represent large scale performance and inhibits adoption. Two dynamic model-based N management tools, which were commercially available in 2021 and 2022 (Adapt-N and Granular), were tested at fifteen on-farm research locations in Nebraska. The objective of this study were to evaluate the site-specific... S. Norquest, L. Puntel, G. Balboa, L. Thompson |
10. Effect of Terrain and Soil Properties on the Effectiveness of Crop-model Based Variable Rate Nitrogen in CornGrowers may be reluctant to adopt variable rate nitrogen (VRN) management because of potential loss in profit and yield. This study assessed the influence of terrain attributes and soil characteristics on the effectiveness of crop-model-based variable rate nitrogen (N) for corn. To evaluate the effectiveness of the VRN methods, yield, total N rate, and N use efficiency (NUE) were compared with the grower’s management. As a crop-model-based recommendation tool, Adapt-N was used. Production... L. Puntel, L. Thompson, G. Balboa, T. Mieno, P. Paccioretti |
11. Sugarcane Yield Mapping Using an On-board Volumetric SensorFew alternatives are available to the sugarcane sector for monitoring crop productivity. However, in recent years, research has been dedicated to developing methods ranging from estimation based on engine parameters to using sensors and artificial intelligence. This study aims to present a new tool for monitoring productivity applied to sugarcane cultivation, which utilizes a volumetric optical sensor, in contrast to other methods already used for this measurement, and is recently being introduced... G. Balboa, J.C. Masnello, F. De oliveira moreira, R. Canal filho, E.R. Da silva, J.P. Molin |
12. Driving Growth Through Precision Agriculture: the Evolution of the Nebraska On-farm Research NetworkThe Nebraska On-Farm Research Network (NOFRN), allows farmers to answer production, profitability and sustainability questions in their own field. The University of Nebraska (USA) sponsors the NOFRN and provides technical support in the experimental design, execution, data analysis and results dissemination. In recent years, precision agriculture technologies have expanded network capabilities through an increasing number of experiments and provided new avenues for data analyses. The goal is... G. Balboa, B. Tobaldo, T. Lexow, J.D. Luck |