Login

Proceedings

Find matching any: Reset
Ferguson, R.B
Fusamura, R
Flint, E.A
Ferraz, M.N
Add filter to result:
Authors
Shiratsuchi, L
Lutz, C.C
Ferguson, R.B
Adamchuk, V.I
Adamchuk, V.I
Pan, L
Ferguson, R.B
Shaver, T
Schmer, M
Irmak, S
Van Donk, S
Wienhold, B
Jin, V
Bereuter, A
Francis, D
Rudnick, D
Ward, N
Hendrickson, L
Ferguson, R.B
Adamchuk, V.I
Fusamura, R
Shibusawa, S
Kodaira, M
Adamchuk, V.I
Ferguson, R.B
KOJIMA, Y
Shibusawa, S
Fusamura, R
SONODA, M
Shiratsuchi, L
Ferguson, R.B
Shanahan, J.F
Adamchuk, V.I
Slater, G
Stevens, L.J
Ferguson, R.B
Franzen, D.W
Kitchen, N.R
Spekken, M
Molin, J.P
Romanelli, T.L
Ferraz, M.N
Ferraz, M.N
Molin, J.P
Bean, G
Kitchen, N.R
Franzen, D.W
Miles, R.J
Ransom, C
Scharf, P
Camberato, J
Carter, P
Ferguson, R.B
Fernandez, F.G
Laboski, C
Nafziger, E
Sawyer, J
Shanahan, J
Ransom, C.J
Bean, M
Kitchen, N
Camberato, J
Carter, P
Ferguson, R.B
Fernandez, F.G
Franzen, D.W
Laboski, C
Nafziger, E
Sawyer, J
Shanahan, J
Bastos, L
Ferguson, R.B
Luck, J
Parrish, J
Thompson, L
Krienke, B
Glewen, K
Ferguson, R.B
Trevisan, R.G
Eitelwein, M.T
Ferraz, M.N
Tavares, T.R
Molin, J.P
Neves, D.C
Bastos, L
Ferguson, R.B
Ferraz, M.N
Trevisan, R.G
Eitelwein, M.T
Molin, J
Karp, F.H
Li, D
Miao, Y
Fernández, .G
Kitchen, N.R
Ransom, C.
Bean, G.M
Sawyer, .E
Camberato, J.J
Carter, .R
Ferguson, R.B
Franzen, D.W
Franzen, D.W
Franzen, D.W
Franzen, D.W
Laboski, C.A
Nafziger, E.D
Shanahan, J.F
Flint, E.A
Yost, M
Hopkins, B.G
Topics
Proximal Sensing in Precision Agriculture
Precision A to Z for Practitioners
Spatial Variability in Crop, Soil and Natural Resources
Engineering Technologies and Advances
Education and Training in Precision Agriculture
Engineering Technologies and Advances
Sensor Application in Managing In-season Crop Variability
Sensor Application in Managing In-season CropVariability
Decision Support Systems in Precision Agriculture
Proximal Sensing in Precision Agriculture
Precision Nutrient Management
Sensor Application in Managing In-season Crop Variability
Precision Crop Protection
In-Season Nitrogen Management
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
ISPA Community: Nitrogen
In-Season Nitrogen Management
Type
Poster
Oral
Year
2012
2010
2014
2016
2018
2022
Home » Authors » Results

Authors

Filter results19 paper(s) found.

1. Precision Agriculture Education Program In Nebraska

With the cost of agricultural inputs and the instability of commodity prices increasing, demand is growing for training in the essential skills needed to successfully implement site-specific crop management. This set of skills is uniquely interdisciplinary in nature. Thus, it is essential for potential users of precision agriculture to understand the basics of geodetic and electronic control equipment, principles of geographic information systems, fundamentals... V.I. Adamchuk, R.B. Ferguson

2. Precision Agricultural Branding Using Near-infrared Spectroscopy System

... Y. Kojima, S. Shibusawa, R. Fusamura, M. Sonoda

3. Comparison Of Spectral Indices Derived From Active Crop Canopy Sensors For Assessing Nitrogen And Water Status

... L. Shiratsuchi, R.B. Ferguson, J.F. Shanahan, V.I. Adamchuk, G. Slater

4. Integrated Crop Canopy Sensing System for Spatial Analysis of In-Season Crop Performance

Over the past decade, the relationships between leaf color, chlorophyll content, nitrogen supply, biomass and grain yield of agronomic crops have been studied widely.... L. Shiratsuchi, C.C. Lutz, R.B. Ferguson, V.I. Adamchuk

5. An Approach to Selection of Soil Water Content Monitoring Locations within Fields

Increased input efficiency is one of the main challenges for a modern agricultural enterprise. One way to optimize production cycles is to rationalize crop residue utilization. In conditions where there is limited use of mineral fertilizers and without applying manure, plant residues may be used as an organic fertilizer as... V.I. Adamchuk, L. Pan, R.B. Ferguson

6. Landscape Influences on Soil Nitrogen Supply and Water Holding Capacity for Irrigated Corn

... T. Shaver, M. Schmer, S. Irmak, S. Van donk, B. Wienhold, V. Jin, A. Bereuter, D. Francis, D. Rudnick, N. Ward, L. Hendrickson, R. Ferguson, V.I. Adamchuk

7. An Approach to Making Non-Smell Composting System : Case Study in Fuchu

The project to form ... R. Fusamura, S. Shibusawa, M. Kodaira

8. In-Season Nitrogen Requirement For Maize Using Model And Sensor-Based Recommendation Approaches

Nitrogen (N), an essential element, is often limiting to plant growth.  There is great value in determining the optimum quantity and timing of N application to meet crop needs while minimizing losses.  Low nitrogen use efficiency (NUE) has been attributed to several factors including poor synchrony between N fertilizer and crop demand, unaccounted for spatial variability resulting in varying crop N needs, and temporal variances in crop N needs.  Applying a portion... L.J. Stevens, R.B. Ferguson, D.W. Franzen, N.R. Kitchen

9. Site Specific Costs Concerning Machine Path Orientation

Computer algorithms have been created to simulate in advance the orientation/pattern of a machine operation on a field. Undesired impacts were obtained and quantified for these simulations, like: maneuvering and overlap of inputs in headlands; servicing of secondary units; and soil loss by water erosion. While the efforts could minimize the overall costs, they disregard the fact that these costs aren’t uniformly distributed over irregular fields. The cost of a non-productive machine process... M. Spekken, J.P. Molin, T.L. Romanelli, M.N. Ferraz

10. NIR Spectroscopy to Map Quality Parameters of Sugarcane

Precision Agriculture aims to explore the potential of each crop considering the differences within the field. One information that is considered the most important is the yield or the obtained income in the field. However, in the case of sugarcane, quality will also directly influence farmer’s income. Several studies suggest harvester automation aiming to monitor yield, but few consider the quality analysis in the process. Among the existing methods for measuring sugar content the one that... M.N. Ferraz, J.P. Molin

11. Modifying the University of Missouri Corn Canopy Sensor Algorithm Using Soil and Weather Information

Corn production across the U.S. Corn belt can be often limited by the loss of nitrogen (N) due to leaching, volatilization and denitrification. The use of canopy sensors for making in-season N fertilizer applications has been proven effective in matching plant N requirements with periods of rapid N uptake (V7-V11), reducing the amount of N lost to these processes. However, N recommendation algorithms used in conjunction with canopy sensor measurements have not proven accurate in making N recommendations... G. Bean, N.R. Kitchen, D.W. Franzen, R.J. Miles, C. Ransom, P. Scharf, J. Camberato, P. Carter, R.B. Ferguson, F. Fernandez, C. Laboski, E. Nafziger, J. Sawyer, J. Shanahan

12. Field-scale Nitrogen Recommendation Tools for Improving a Canopy Reflectance Sensor Algorithm

Nitrogen (N) rate recommendation tools are utilized to help producers maximize grain yield production. Many of these tools provide recommendations at field scales but often fail when corn N requirements are variable across the field. This may result in excess N being lost to the environment or producers receiving decreased economic returns on yield. Canopy reflectance sensors are capable of capturing within-field variability, although the sensor algorithm recommendations may not always be as accurate... C.J. Ransom, M. Bean, N. Kitchen, J. Camberato, P. Carter, R. Ferguson, F. Fernandez, D. Franzen, C. Laboski, E. Nafziger, J. Sawyer, J. Shanahan

13. Active and Passive Crop Canopy Sensors As Tools for Nitrogen Management in Corn

The objectives of this research were to (i) assess the correlation between active and passive crop canopy sensors’ vegetation indices at different corn growth stages and (ii) assess sidedress variable rate nitrogen (N) recommendation accuracy of active and passive sensors compared to the agronomic optimum N rate (AONR). The experiment was conducted near Central City, Nebraska on a Novina sandy loam planted to corn on 15 April 2015. The experiment was a randomized complete-block design with... L. Bastos, R. Ferguson

14. Liquid Flow Control Requirements for Crop Canopy Sensor-Based N Management in Corn: A Project SENSE Case Study

While on-farm adoption of crop canopy sensors for directing in-season nitrogen (N) application has been slow, research focused on these systems has been significant for decades. Much emphasis has been placed on developing and testing algorithms based on sensor output to predict N needs, but little information has been published regarding liquid flow control requirements on equipment used in conjunction with these sensing systems. Addition of a sensor-based system to a standard spray rate controller... J. Luck, J. Parrish, L. Thompson, B. Krienke, K. Glewen, R.B. Ferguson

15. Optimum Spatial Resolution for Precision Weed Management

The occurrence and number of herbicide-resistant weeds in the world has increased in recent years. Controlling these weeds becomes more difficult and raises production costs. Precision spraying technologies have been developed to overcome this challenge. However, these systems still have relatively high acquisition cost, requiring studies of the relation between the spatial distribution of weeds and the economically optimum spatial resolution of the control method. In this context, the objective... R.G. Trevisan, M.T. Eitelwein, M.N. Ferraz, T.R. Tavares, J.P. Molin, D.C. Neves

16. Active and Passive Sensor Comparison for Variable Rate Nitrogen Determination and Accuracy in Irrigated Corn

The objectives of this research were to (i) compare active and passive crop canopy sensors’ sidedress variable rate nitrogen (VRN) derived from different vegetation indices (VI) and (ii) assess VRN recommendation accuracy of active and passive sensors as compared to the agronomic optimum N rate (AONR) in irrigated corn. This study is comprised of six site-years (SY), conducted in 2015, 2016 and 2017 on different soil types (silt loam, loam and sandy loam) and with a range of preplant-applied... L. Bastos, R.B. Ferguson

17. Soybean Plant Phenotyping Using Low-Cost Sensors

Plant phenotyping techniques are important to present the performance of a crop and it interaction with the environment. The phenotype information is important for plant breeders to analyze and understand the plant responses from the ambient conditions and the inputs offered for it. However, for conclusive analysis it is necessary a large number of individuals. Thus, phenotyping is the bottleneck of plant breeding, a consequence of the labor intensive and costly nature of the classical phenotyping.... M.N. Ferraz, R.G. Trevisan, M.T. Eitelwein, J. Molin, F.H. Karp

18. Developing a Machine Learning and Proximal Sensing-based In-season Site-specific Nitrogen Management Strategy for Corn in the US Midwest

Effective in-season site-specific nitrogen (N) management strategies are urgently needed to ensure both food security and sustainable agricultural development. Different active canopy sensor-based precision N management strategies have been developed and evaluated in different parts of the world. Recent studies evaluating several sensor-based N recommendation algorithms across the US Midwest indicated that these locally developed algorithms generally did not perform well when used broadly across... D. Li, Y. Miao, .G. Fernández, N.R. Kitchen, C. . Ransom, G.M. Bean, .E. Sawyer, J.J. Camberato, .R. Carter, R.B. Ferguson, D.W. Franzen, D.W. Franzen, D.W. Franzen, D.W. Franzen, C.A. Laboski, E.D. Nafziger, J.F. Shanahan

19. Variable Rate Nitrogen Approach in a Potato-wheat-wheat Cropping System

Nitrogen application in agriculture is a vital process for optimal plant growth and yield outcomes. Different factors such as topography, soil properties, historical yield, and crop stress affect nitrogen (N) needs within a field. Applying variable N within a field could improve precision agriculture. Optimal N management is a system that involves applying a conservative variable base rate at or shortly after planting followed by in-season assessment and, if needed, variable rate application—with... E.A. Flint, M. Yost, B.G. Hopkins