Authors
Filter results3 paper(s) found. |
---|
1. Developing a Wheat Precision Nitrogen Management Strategy by Combining Satellite Remote Sensing Data and WheatGrow ModelPrecision nitrogen (N) management (PNM) is becoming increasingly popular due to its ability to synchronize crop N demand with soil N supply spatiotemporally. The previous evidence has demonstrated that variable rate fertilization contributes to achieving high yields and high efficiencies. However, PNM at the regional level remains unclear and challenging. This study aims to develop a novel management zone (MZ)-based PNM strategy (MZ-PNM) to optimize the basal and topdressing N rates at the regional... Y. Miao, X. Liu, Y. Tian, Y. Zhu, W. Cao, Q. Cao, X. Chen, Y. Li |
2. Potential Benefits of Variable Rate Nitrogen Topdressing Strategy Coupled with Zoning Technique: a Case Study in a Town-scale Rice Production SystemIntegrating remote sensing (RS)-based variable rate nitrogen (N) recommendation (VRNR) algorithms and management zones (MZs) may improve the accuracy and efficiency of site-specific N management. However, its potential benefits for application in commercial rice production systems can hardly be assessed, since it requires to intervene in common agricultural practices and causes certain economic and environmental consequences. Through a machine learning approach, this study aims to comprehensively... J. Zhang, W. Wang, Z. Fu, Q. Cao, Y. Tian, Y. Zhu, W. Cao, X. Liu |
3. Optimizing Nitrogen Application in Global Wheat Production by an Integrated Bayesian and Machine Learning ApproachWheat production plays a pivotal role in global food security, with nitrogen fertilizer application serving as a critical factor. The precise application of nitrogen fertilizer is imperative to maximize wheat yield while avoiding environmental degradation and economic losses resulting from excess or inadequate usage. The integration of Bayesian and machine learning methodologies has gained prominence in the realm of agricultural research. Bayesian and machine learning based methods have great... Z. Liu, X. Liu, Y. Tian, Y. Zhu, W. Cao, Q. Cao |