Authors
Filter results1 paper(s) found. |
---|
1. Analytics Model for Predicting Sucrose Percentage in Sugarcane Using Machine Learning TechniquesSucrose is one of the most important indicators in the final profitability of Colombian sugar mills, therefore, its understanding and forecast are fundamental for the business. In this work, a proposal is formulated for an analysis model that allows predicting the percentage of sucrose based on historical data from mechanically harvested farms with the objective of knowing the numerical value of sucrose for each month of milling and be able to plan monthly and annual sugar production. Regarding... P. Valencia ramirez |