Login

Proceedings

Find matching any: Reset
Walsh, O
Add filter to result:
Authors
Samborski, S.M
Szatylowicz, J
Gnatowski, T
Leszczyńska, R
Thornton, M
Walsh, O
Kumari, S
Rathore, J
Mitra, S
Gardezi, M
Walsh, O
Gardezi, M
Walsh, O
Joshi, D
Kumari, S
Clay, D.E
Rathore, J
Topics
On Farm Experimentation with Site-Specific Technologies
Site-Specific Nutrient, Lime and Seed Management
Artificial Intelligence (AI) in Agriculture
Type
Oral
Poster
Year
2022
2024
Home » Authors » Results

Authors

Filter results3 paper(s) found.

1. Use of Remotely Measured Potato Canopy Characteristics As Indirect Yield Estimators

Prediction of potato yield before harvest is important for making agronomic and marketing decisions. Active optical sensors (AOS) are rarely used together with other hand-held instruments for monitoring potato growth, including yield prediction. The aim of the research was to determine the relationship between manually and remotely measured potato crop characteristics throughout the growing season and yield in commercial potato fields. Objective was also to identify crop characteristics that most... S.M. Samborski, J. Szatylowicz, T. Gnatowski, R. Leszczyńska, M. Thornton, O. Walsh

2. Optimizing Soil Nutrient Management: Agricultural Policy/environmental Extender (APEX) Model Simulation for Field Scale Phosphorous Loss Reduction in Virginia

Managing soil nutrients is crucial for enhancing crop productivity and meeting consumptions demands while minimizing environmental impacts. Sustainable agriculture relies on well-planned soil nutrient management strategies. Phosphorous (P) stands out among the 16 essential soil nutrients, particularly in Virginia, where natural P levels are typically low. Adequate amount of P is necessary for the early root formation and plant growth. However, excess amount of P in the soil leads to increase the... S. Kumari, J. Rathore, S. Mitra, M. Gardezi, O. Walsh

3. Predicting Soybean Yield Using Remote Sensing and a Machine Learning Model

Soybean (Glycine max L.), a nutrient-rich legume crop, is an important resource for both livestock feed and human dietary needs. Accurate preharvest yield prediction of soybeans can help optimize harvesting strategies, enhance profitability, and improve sustainability. Soybean yield estimation is inherently complex because yield is influenced by many factors including growth patterns, varying crop physiological traits, soil properties, within-field variability, and weather conditions. The objective... M. Gardezi, O. Walsh, D. Joshi, S. Kumari, D.E. Clay, J. Rathore