Authors
Filter results4 paper(s) found. |
---|
1. Sectioning And Assessment Remote Images For Precision Agriculture: The Case Of Orobanche Crenate In Pea CropThe software SARI® has been developed to implement precision agriculture strategies through remote sensing imagery. It is written in IDL® and works as an add-on of ENVI®. It has been designed to divide remotely sensed imagery into “micro-images”, each corresponding to a small area (“micro-plot”), and to determine the quantitative agronomic and/or environmental biotic (i.e. weeds, pathogens) and/or non-biotic (i.e. nutrient levels) indicator/s... L. Garcia-torres, D. Gomez-candon, J.J. Caballero-novella, M. Gomez-casero, J.M. Pe, M. Jurado-exp, F. Lopez-granados, I. Castillejo-gonz, A. Garc |
2. Management Of Remote Imagery For Precision AgricultureSatellite and airborne remotely sensed images cover large areas, which normally include dozens of agricultural plots. Agricultural operations such as sowing, fertilization, and pesticide applications are designed for the whole plot area, i.e. 5 to 20 ha, or through precision agriculture. This takes into account the spatial variability of biotic and of abiotic factors and uses diverse technologies to apply inputs at variable rates, fitted to the needs of each small defined area, i.e. 25 to 200... L. Garcia-torres, D. Gomez-candon, J.J. Caballero-novella, J.M. Pe, M. Jurado-exp, I. Castillejo-gonz, A. Garc, F. Lopez-granados, L. Prassack |
3. Automatic Remote Image Processing For Agriculture Uses Through Specific SoftwareAbstract ... D. Gómez-candón, J.J. Caballero-novella, J.M. Peña-barragán, M. Jurado-expósito, F. López-granados, L. Garcia-torres, A.I. Decastro |
4. Position Error of Input Prescription Map Delineated From Remote ImagesThe spatial variability of biotic factors... D. Gómez-candón, J.J. Caballero-novella, J.M. Peña-barragán, M. Jurado-expósito, L. Garcia-torres, F. López-granados, A.I. Decastro |