Login

Proceedings

Find matching any: Reset
Add filter to result:
Spectral Vegetation Indices to Quantify In-field Soil Moisture Variability
J. Siegfried, R. Khosla, L. Longchamps
Colorado State University

Agriculture is the largest consumer of water globally. As pressure on available water resources increases, the need to exploit technology in order to produce more food with less water becomes crucial. The technological hardware requisite for precise water delivery methods such as variable rate irrigation is commercially available. Despite that, techniques to formulate a timely, accurate prescription for those systems are inadequate. Spectral vegetation indices, especially Normalized Difference Vegetation Index (NDVI), are often used to gauge crop vigor and related parameters (e.g. leaf nitrogen content and grain yield). However, research heretofore rarely addresses the influence of soil moisture on the index. The objective of this study was to determine if NDVI derived from satellite imagery could assist in quantifying soil moisture variability in an irrigated maize production system. A variable rate irrigation pivot was used to form six water treatment zones. Each zone was equipped with a set of tensiometers installed in the center of the plots at 20, 45, and 75cm depths to individually monitor conditions in the water treatment zones. Water was applied for each treatment as a percentage of the estimated evapotranspiration (ET) requirement: i.e., 40, 60, 80, 100, 120, and 140 percent of the ET. Data collected from tensiometers was paired with the image pixels corresponding to the ground location of the tensiometers. Statistical analysis was performed separately to assess whether NDVI is representative of soil moisture at several crop growth stages. Findings from this study indicate that NDVI could quantify variability of soil moisture tension at maize crop growth stage R3 (milk) at 20cm (r2 = 0.70, p = 0.04) and 45 cm (r2 = 0.77, p = 0.02) depths. Results suggest that NDVI may be useful for evaluating seasonal soil moisture variability due to irrigation non-uniformity at large field-scales but is otherwise impractical for variable rate irrigation management. Further study is necessary to investigate additional crop growth stages, more crops, and other vegetation indices. Future studies are also needed to evaluate other sources of multispectral imagery.

Keyword: vegetation index,multispectral satellite imagery,precision irrigation,VRI,variable rate irrigation,maize