Login

Proceedings

Find matching any: Reset
Li, F
Prasad, V
Add filter to result:
Authors
Miao, Y
Li, F
Liu, B
Miao, Y
Feng, G
Yue, S
Li, F
Gao, X
Miao, Y
Cao, Q
Cui, Z
Li, F
Dao, T.H
Khosla, R
Chen, X
Cao, Q
Miao, Y
Feng, G
Li, F
Liu, B
Gao, X
Liu, Y
Ciampitti, I.A
Shroyer, K
Prasad, V
Sharda, A
Stamm, M.J
Wang, H
Price, K
Mangus, D
Varela, S
Balboa, G
Prasad, V
Griffin, T
Ciampitti, I
Ferguson, A
Varela, S
Balboa, G
Prasad, V
Griffin, T
Ciampitti, I
Ferguson, A
Topics
Precision Nutrient Management
Proximal Sensing in Precision Agriculture
Precision Nutrient Management
Precision Nutrient Management
Applications of UAVs (unmanned aircraft vehicle systems) in precision agriculture
Remote Sensing Applications in Precision Agriculture
Type
Poster
Oral
Year
2012
2010
2014
2016
Home » Authors » Results

Authors

Filter results7 paper(s) found.

1. Quantifying Spatial Variability Of Indigenous Nitrogen Supply For Precision Nitrogen Management In North China Plain

... Y. Miao, Q. Cao, Z. Cui, F. Li, T.H. Dao, R. Khosla, X. Chen

2. Deriving Nitrogen Indicators of Maize Using the Canopy Chlorophyll Content Index

Many spectral indices have been proposed to derive aerial nitrogen (N) status parameters of crops in recent decades. However, most of red light based spectral indices easily loss sensitivity at moderate-high aboveground biomass. The objective of present study is to assess the performance of red edge based... Y. Miao, F. Li

3. Different Leaf Sensing Approaches for the Estimation of Winter Wheat Nitrogen Status

Nondestructive real time diagnosis of crop N status is crucial to the development of precision nitrogen (N) management strategies. Chlorophyll meter has been a popular sensor for such purposes and different approaches to use this sensor has been developed using a threshold value, nitrogen sufficiency index (NSI) or ratio of... B. Liu, Y. Miao, G. Feng, S. Yue, F. Li, X. Gao

4. Evaluating Different Nitrogen Management Strategies For The Intensive Wheat-Maize System In North China Plain

The sustainable agricultural development involves both environmental challenges and production goals to meet growing food demand. However, excessive nitrogen (N) applications are threatening the sustainability of intensive agriculture in the North China Plain (NCP). Improved N management should result in greater N use efficiency (NUE) and producer profit while reducing the risk of environmental contamination. Therefore, developing and disseminating feasible N management strategies... Q. Cao, Y. Miao, G. Feng, F. Li, B. Liu, X. Gao, Y. Liu

5. sUAVS Technology For Better Monitoring Crop Status For Winter Canola

The small-unmanned aircraft vehicles (sUAVS) are currently gaining more popularity in agriculture with uses including identification of weeds and crop production issues, diagnosing nutrient deficiencies, detection of chemical drift, scouting for pests, identification of biotic or abiotic stresses, and prediction of biomass and yield. Research information on the use of sUAVS have been published and conducted in crops such as rice, wheat, and corn, but the development of... I.A. Ciampitti, K. Shroyer, V. Prasad, A. Sharda, M.J. Stamm, H. Wang, K. Price, D. Mangus

6. Spatial-temporal Evaluation of Plant Phenotypic Traits Via Imagery Collected by Unmanned Aerial Systems (UAS)

Unmanned aerial systems (UAS) and a stereovision approach were implemented to generate a 3D reconstruction of the top of the canopy. The 3D reconstruction or CSM (crop surface model) was utilized to evaluate biophysical parameters for both spatial- and temporal-scales. The main goal of the project was to evaluate sUAVs technology to assist plant height and biomass estimation. The main outcome of this process was to utilize CSMs to gain insights in the spatial-temporal dynamic of plants within... S. Varela, G. Balboa, V. Prasad, T. Griffin, I. Ciampitti, A. Ferguson

7. Spatial-temporal Evaluation of Plant Phenotypic Traits Via Imagery Collected by Unmanned Aerial Systems (UAS)

Unmanned aerial systems (UAS) and a stereovision approach were implemented to generate a 3D reconstruction of the top of the canopy. The 3D reconstruction or CSM (crop surface model) was utilized to evaluate biophysical parameters for both spatial- and temporal-scales. The main goal of the project was to evaluate sUAVs technology to assist plant height and biomass estimation. The main outcome of this process was to utilize CSMs to gain insights in the spatial-temporal dynamic of plants within... S. Varela, G. Balboa, V. Prasad, T. Griffin, I. Ciampitti, A. Ferguson