Login

Proceedings

Find matching any: Reset
Beeri, O
Add filter to result:
Authors
Beeri, O
Pelta, R
Mey-tal, S
Raz, J
Rud, R
Beeri, O
Mey-tal , S
Beeri, O
May-tal, S
Rud, R
Raz, Y
Pelta, R
Beeri, O
May-tal, S
Raz, J
Rud, R
Pelta, R
Beeri, O
Shilo, T
Tarshish, R
Beeri, O
Pelta, R
Sade, Z
Shilo, T
Topics
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Decision Support Systems
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Type
Poster
Oral
Year
2018
2022
Home » Authors » Results

Authors

Filter results6 paper(s) found.

1. Data Fusion of Imagery from Different Satellites for Global and Daily Crop Monitoring

Satellite-based Crop Monitoring is an important tool for decision making of irrigation, fertilization, crop protection, damage assessment and more. To allow crop monitoring worldwide, on a daily basis, data fusion of images taken by different satellites is required. So far, most researches on data fusion focus on retrospective analysis, while advanced crop monitoring capabilities mandate the use of data in real time mode. Therefore, our project goals were: (1) to build a data-fusion online system... O. Beeri, R. Pelta, S. Mey-tal, J. Raz

2. Designated Value for a Field Polygon Based on Imagery Data: A Case Study of Crop Vigor in Agricultural Application for Irrigation

Any irrigation action for a field management zone, which is based on images, requires a transformation into single value. Since data distribution is ab-normal in an image, using a mean value to estimate the crop coefficient (Kc), an overlaid polygon may not represent properly its water demand. Therefore, this project’s aim was to examine to which extent different statistics of potential designated values will affect an estimated Kc, and consequently affect irrigation practices. Satellite... R. Rud, O. Beeri, S. Mey-tal

3. Detecting Variability in Plant Water Potential with Multi-Spectral Satellite Imagery

Irrigation Intelligence is a practice of precise irrigation, with the goal of providing crops with the right amount of water, at the right time, for optimized yield. One of the ways to achieve that, on a global scale, is to utilize Landsat-8 and Sentinel-2 images, providing together frequent revisit cycles of less than a week, and an adequate resolution for detection of 1 ha plots. Yet, in order to benefit from these advantages, it is necessary to examine the information that can be extracted... O. Beeri, S. May-tal, R. Rud, Y. Raz, R. Pelta

4. Field Test of a Satellite-Based Model for Irrigation Scheduling in Cotton

Cotton irrigation in Israel began in the mid-1950s. It is based on an irrigation protocol developed over dozens of years of cotton farming in Israel, and proved to provide among the world's best cotton yield results. In this experiment, we examined the use of an irrigation recommendation system that is based on satellite imagery and hyper-local meteorological data, "Manna treatment", compared to the common irrigation protocols in Israel, which use a crop coefficient (Kc) table and... O. Beeri, S. May-tal, J. Raz, R. Rud

5. A Hyperlocal Machine Learning Approach to Estimate NDVI from SAR Images for Agricultural Fields

The normalized difference vegetation index (NDVI) is a key parameter in precision agriculture used globally since the 1970s. The NDVI is sensitive to the biochemical and physiological properties of the crop and is based on the Red (~650 nm) and NIR (~850 nm) spectral bands. It is used as a proxy to monitor crop growth, correlates to the crop coefficient (Kc), leaf area index (LAI), crop cover, and more. Yet, it is susceptible to clouds and other atmospheric conditions which might alter... R. Pelta, O. Beeri, T. Shilo, R. Tarshish

6. Multi-sensor Imagery Fusion for Pixel-by-pixel Water Stress Mapping

Evaluating water stress in agricultural fields is fundamental in irrigation decision-making, especially mapping the in-field water stress variability as it allows real-time detection of system failures or avoiding yield loss in cases of unplanned water stress. Water stress mapping by remote sensing imagery is commonly associated with the thermal or the short-wave-infra-red (SWIR) bands. However, integration of multi-sensors imagery such as radar imagery or sensors with only visible and near-infra-red... O. Beeri, R. Pelta, Z. Sade, T. Shilo