Authors
Filter results4 paper(s) found. |
---|
1. Design of Ground Surface Sensing Using RADARGround sensing is the key task in harvesting head control system. Real time sensing of field topography under vegetation canopy is very challenging task in wild blueberry cropping system. This paper presents the design of an ultra-wide band RADAR sensing, scanning device to recognize the soil surface level under the canopy structure. Requirements for software and hardware were considered to determine the usability of the ultra-wide band RADAR system.An automated head elevation... M.M. Mohamed, Q. Zaman, T. Esau, A. Farooque |
2. Development of a Granular Herbicide Spot Applicator for Management of Hair Fescue (Festuca Filiformis) in Wild Blueberry (Vaccinium Angustifolium)Hair fescue has quickly become the pest of greatest concern for the wild blueberry industry. This is largely due to its ability to outcompete wild blueberry for critical resources including water, nutrients and most importantly space. In Nova Scotia, between 2001 and 2019, hair fescue had increased in field frequency from 7% to 68% and in field uniformity from 1.4% to 25%. This rapidly spreading and economically destructive weed is likewise a significant challenge to manage, with only a single... C. Maceachern, T. Esau, Q. Zaman |
3. Establishing the First Soil Water Characteristics Curve for the Soils of Prince Edward Island, CanadaSoil water characteristics curve (SWCC), for Prince Edward Island (PEI), is much more needed currently for the sustainable production of agriculture yields. It will not only fulfil the requirements of the province’s farmers for irrigation scheduling but also help the government to decide about permitting the use of groundwater for supplemental irrigation on the island. A soil water characteristics curve in PEI does not exist to support precision agriculture practices. Precision irrigation... S.J. Cheema, A.A. Farooque, F. Abbas, T. Esau, K. Grewal |
4. Suitability of ML Algorithms to Predict Wild Blueberry Harvesting LossesThe production of wild blueberries (Vaccinium angustifolium.) is contributing 112.2 million dollars to the Canada’s revenue which can be further increased through controlling harvest losses. A precise prediction of blueberry harvesting losses is necessary to mitigate such losses. In this study, the performance of three machine learning (ML) models was evaluated to predict the wild blueberry harvest losses on the ground. The data from four commercial fields in Atlantic Canada were... H. Khan, T. Esau, A. Farooque, F. Abbas |