Authors
Filter results5 paper(s) found. |
---|
1. Hyperspectral Imagery for the Detection of Nitrogen Stress in Potato for In-season Management... T.J. Nigon, C. Rosen, D. Mulla, Y. Cohen, V. Alchanatis, R. Rud |
2. Evaluating Water Status in Potato Fields Using Combined Information from RGB and Thermal Aerial ImagesPotato yield and quality are highly dependent on an adequate supply of water. In this study the combined information from RGB and thermal aerial images to evaluate... Y. Cohen, V. Alchanatis, B. Heuer, H. Lemcoff, M. Sprintsin, C. Rosen, D. Mulla, T. Nigon, Z. Dar, A. Cohen, A. Levi, R. Brikman, T. Markovits, R. Rud |
3. Evaluating Remote Sensing Based Adaptive Nitrogen Management for Potato ProductionConventional nitrogen (N) management for potato production in the Upper Midwest, USA relies on using split-applications of N fertilizer or a controlled release N product. Using remote sensing to adaptively manage N applications has the potential to improve N use efficiency and reduce losses of nitrate to groundwater, which are important regional concerns. A two-year plot-scale experiment was established to evaluate adaptive N-management using remote sensing compared to conventional practices for... B. Bohman, D. Mulla, C. Rosen |
4. Evaluating the Potential of Improving In-season Nitrogen Status Diagnosis of Potato Using Leaf Fluorescence Sensors and Machine LearningPrecision nitrogen (N) management is particularly important for potato crops due to their high N fertilizer demand and high N leaching potential caused by their shallow root systems and preference for coarse-textured soils. Potato farmers have been using a standard lab analysis called petiole nitrate-N (PNN) test as a tool to diagnose potato N status and guide in-season N management. However, the PNN test suffers from many disadvantages including time constraints, labor, and cost of analysis.... S. Wakahara, Y. Miao, S. Gupta, C. Rosen, K. Mizuta, J. Zhang, D. Li |
5. Evaluating Different Strategies for In-season Potato Nitrogen Status Diagnosis Using Two Leaf SensorsAccurate and efficient in-season diagnosis of potato nitrogen (N) status is key to the success of in-season N management for improved profitability and environmental protection. Sensor-based approaches will support more timely decision making compared to plant tissue-based approaches. SPAD-502 (SPAD; Konica Minolta, Tokyo, Japan) is a commonly used sensor for potato N status diagnosis. Dualex Scientific+ (Dualex; METOS® by Pessl Instruments, Weiz, Austria) is a new leaf chlorophyll... S. Wakahara, Y. Miao, S. Gupta, C. Rosen |