Login

Proceedings

Find matching any: Reset
Bishop, T
Add filter to result:
Authors
Tilse, M.J
Filippi, P
Bishop, T
Filippi, P
Bishop, T
Al-Shammari, D
McPherson, T
Filippi, P
Bishop, T
Han, S
Topics
Proximal and Remote Sensing of Soils and Crops (including Phenotyping)
Decision Support Systems
Big Data, Data Mining and Deep Learning
Type
Oral
Year
2024
Home » Authors » Results

Authors

Filter results3 paper(s) found.

1. Predicting, Mapping, and Understanding the Drivers of Grain Protein Content Variability – Utilising John Deere’s New Harvestlab 3000 Grain Sensing System

Grain protein content (GPC) is a key determinant of the prices that grain growers receive, and the rising cost of production is shifting management focus towards optimising this to maximise return on investment. In 2023, John Deere released the HarvestLab 3000TM Grain Sensing system in Australia for real-time, on-the-go measurement of protein, starch, and oil values for wheat, barley, and canola. However, while the uptake of these sensors is increasing, GPC maps are not available for... M.J. Tilse, P. Filippi, T. Bishop

2. Are Pulses Really More Variable Than Cereals? a Country-wide Analysis of Within-field Variability

In Australia, pulses are underutilised by growers relative to cereal crops. There is significant global interest in growing pulses to provide more plant protein, and they also provide a string of agronomic and environmental benefits, such as their ability to fix nitrogen, and provide a pest and disease break for cereal crops. Many studies attribute this underutilisation to pulses exhibiting greater within-field yield variability than cereals. However, this has never been comprehensively examined... P. Filippi, T. Bishop, D. Al-shammari, T. Mcpherson

3. On Data-driven Crop Yield Modelling, Predicting, and Forecasting and the Common Flaws in Published Studies

There has been a recent surge in the number of studies that aim to model crop yield using data-driven approaches. This has largely come about due to the increasing amounts of remote sensing (e.g. satellite imagery) and precision agriculture data available (e.g. high-resolution crop yield monitor data), and abundance of machine learning modelling approaches. This is a particular problem in the field of Precision Agriculture, where many studies will take a crop yield map (or a small number), create... P. Filippi, T. Bishop, S. Han, I. Rund