Authors
Filter results3 paper(s) found. |
---|
1. Investigation Of Crop Varieties At Different Growth Stages Using Optical Sensor DataCotton, soybean and sorghum are economically important crops in Texas. Knowing the growing status of crops at different stages of growth is crucial to apply site-specific management and increase crop yield for farmers. Field experiments were initiated to measure cotton, soybean and sorghum plants growth status and spatial variability through the whole growing cycle. A ground-based active optical sensor, Greenseeker®, was used to collect the Normalized Difference Vegetation Index (NDVI) data... H. Zhang, Y. Lan, J. Westbrook, C. Suh, C. Hoffmann, R. Lacey |
2. Evaluation of Image Acquisition Parameters and Data Extraction Methods on Plant Height Estimation with UAS ImageryAerial imagery from unmanned aircraft systems (UASs) has been increasingly used for field phenotyping and precision agriculture. Plant height is one important crop growth parameter that has been estimated from 3D point clouds and digital surface models (DSMs) derived from UAS-based aerial imagery. However, many factors can affect the accuracy of aerial plant height estimation. This study examined the effects of image overlap, pixel resolution, and data extraction methods on estimation... C. Yang, C. Suh, W. Guo, H. Zhao, J. Zhang, R. Eyster |
3. Influence of Ground Control Points and Processing Parameters on UAS Image Mosaicking for Plant Height EstimationDigital surface models (DSMs) and 3D point clouds, generated using overlapping images from unmanned aircraft systems (UASs), are often used for plant height estimation in phenotyping and precision agriculture. This study examined the effects of the quantity and placement of ground control points (GCPs) and image processing parameters on the creation of DSMs and 3D point clouds for plant height estimation. A 2-ha field containing multiple experimental plots with four crops (corn, cotton, sorghum,... C. Yang, H. Zhao, W. Guo, J. Zhang, C. Suh, B.K. Fritz |