Topics
Filter results11 paper(s) found. |
---|
1. Application Of Precision Agriculture In Carbon Farming Practices Using The Real-time Soil Sensor... Y. Li |
2. An Overview of Soil Carbon, Management, and Agricultural SystemsTopics to be covered include a discussion of what soil carbon sequestration is, how and where in the soil it occurs, and its role in maintaining important soil properties. The author draws upon his experience and that of others about practices for various parts of the US to describe on-farm and experimental agricultural systems and their degree of success to sequester carbon and improve soil quality. Included is an overview of carbon sequestration strategies and pos... R. Follett, E. Short |
3. Soil Organic Carbon Maintenance Requiremnets And Mineralizatyion Rate Constants: Site Specific CalcuationsOver the past 100 years numerous studies have been conducted with the goal of quantifying the impact of management on carbon turnover. It is difficult to conduct a mechanistic evaluation of these studies because each study was conducted under unique soil, climatic, and management conditions. Techniques for directly comparing data from unique studies are needed. This study discusses techniques for comparing data collected... D.E. Clay, G. Carlson, J. Tatge |
4. On-combine Sensing Technique For Mapping Straw Yield Within Wheat FieldsStraw from production of wheat is available for conversion to bioenergy. However, not all of this straw is available for conversion because a certain amount must be returned to the soil for conservation. County and state-wide inventories do not account for variation within farm fields. In this study, a technique is described that applies information from on-combine crop sensors into estimation of straw yield across fields. Straw yiel... D.S. Long, , |
5. Modeling Soil Carbon Spatial Variation: Case Study In The Palouse RegionSoil organic carbon (Cs) levels in the soil profile reflect the transient state or equilibrium conditions determined by organic carbon inputs and outputs. In areas with strong topography, erosion, transport and deposition control de soil carbon balance and determine strong within-field differences in soil carbon. Carbon gains or losses are therefore difficult to predict for the average field. Total Cs ranged from 54 to 272 Mg C ha-1, with 42% (range 25 to 78%) of Cs in the top 0.3-m of the so... A.R. Kemanian, D.R. Huggins, D.P. Uberuaga |
6. Performance Of The Veris Nir Spectrophotometer For Mapping Soil C In The Palouse Soils Of Eastern WashingtonRecent advances in sensing technology have made measuring and mapping the dynamics of important soil properties that regulate carbon and nutrient budgets possible. The Veris Technologies (Salinas, KS) Near Infrared (NIR) Spectrometer is one of the first sensors available for collecting geo-referenced NIR soil spectra on-the-go. Field studies were conducted to evaluate the performance of the Veris NIR in wheat grown under both conventional and no-till management in the Palouse region of easter... F. Pierce, E.M. Perry, S.L. Young, H.P. Collins, P.G. Carter |
7. Landscape Position And Climatic Gradient Impacts On Carbon Turnover in Dryland Cropping Systems in ColoradoSoil organic carbon has decreased in cultivated wheat-fallow systems due to increased carbon oxidation, low carbon input and soil erosion. Implementation of more intensive cropping with no-till management has reversed the trend in soil carbon loss. Our objective in this presentation is to review the effects of landscape position on soil carbon status as related to intensification of cropping system. Our analysis wi... G. Peterson, D. Westfall, L.A. Sherrod |
8. C And N Coupling Through Time: Soil C, N, And Grain Yield In A Long-term Continuous Corn TrialGains and losses of both C and N are important in agricultural landscapes. Temporal changes in the pattern of crop yield response to tillage and fertilizer input are commonly observed; often weakly interpreted, in long-term research. A 38-year-long monoculture corn (Zea mays L.) tillage (moldboard plow, no-tillage) by N rate (0, 84, 168, 336 kg N per hectare) trial was sampled to a depth of 100 cm, as was the surround... J. Grove, E.M. Pena-yewtukhiw |
9. Estimating Soil Productivity And Energy Efficiency Using Websoil Survey, Soil Productivity Index Calculator, And Biofuel Energy Systems SimulatorSoils have varying production capacities for a specific plant or sequence of plants under defined management strategies. The production capacity or “productivity” can be quantified as a mathematical function of a soils ability to sufficiently sustain plant ... K.D. Reitsma, T.E. Schumacher |
10. Variability Of Carbon Sequestration In The Tidewater Region Of The Southeastern U.S.In the southeastern US climatic conditions favor long periods of plant growth. This combined with intense rainfall and poor drainage provides idea conditions for the conversion of plant biomass into organic matter. This study combines the results of field experiments designed to examine crop management practices that favor the development of soil organic carbon and organic matter with an examination of the causes for the extreme variability... R. Heiniger |
11. Investigating Profile And Landscape Scale Variability In Soil Organic Carbon: Implications For Process-oriented Precision ManagementMitigation of rising greenhouse gases concentrations in the atmosphere has focused attention on agricultural soil organic C (SOC) sequestration. However, field scale knowledge of the processes and factors regulating SOC dynamics, distribution and variability is lacking. The objectives of this study are to characterize the pr... D.R. Huggins, |