Login

Proceedings

Find matching any: Reset
Site-Specific Pasture Management
Education and Training in Precision Agriculture
ISPA Community: OFEC
Standards & Data Stewardship
Add filter to result:
Authors
Adamchuk, V.I
Applegate, D.B
Archer, J.K
Berger, A.W
Berne, D.T
Bosse, D
Bullock, R.J
Cambouris, A
Charvat jr., K
Charvat, K
Ciampitti, I
Clay, D.E
Cox, M
Craker, B.E
Daggett, D.G
Delgadillo, C.A
Dzinaj, T
Ellixson, A
Ellsworth, J.W
Ferguson, R.B
Ferreyra, R
Goeringer, P
Gowler, A
Griffin, T
Haringx, S.C
Hillyer, C
Horakova, S
Howatt, T
Hunt, A
Kepka, M
Kinder, T
Klose, R
Kyveryga, P.M
Lukas, V
Mandel, R
McGary, S.D
Morris, T
Mueller, D
Murrell, S
Nef, B.K
Nerpel, D
Nieman, S.T
Nze Memiaghe, J.D
Reddy, L
Reznik, T
Rhea, S.T
Roberts, D
Ruckelshausen, A
Russo, J.M
Sanders, P
Schultz, E.D
Seger, J
Shannon, D.K
Shearouse, T.W
Shen, F
Shibusawa, S
Stelford, M.W
Tevis, J.W
Thompson, L
Tremblay, N
Waits, M
Williams, J.D
Wilson, J.A
Wilson, J.W
Topics
Education and Training in Precision Agriculture
Standards & Data Stewardship
Site-Specific Pasture Management
Type
Oral
Poster
Year
2010
2016
2022
Home » Topics » Results

Topics

Filter results14 paper(s) found.

1. Developing And Teaching A Site-specific Crop/soil Management Course

           Site-specific crop/soil management technologies have been available for over fifteen years. Consequently, there is a demand for classroom and laboratory education across a variety of agricultural disciplines in the University community. To meet this demand, a course was developed in 1998 to teach the basic concepts of site-specific crop/soil management. This class is designed as a upper level undergraduate and graduate class and generally has between 1... M. Cox, D. Roberts

2. Precision Agriculture Education Program In Nebraska

With the cost of agricultural inputs and the instability of commodity prices increasing, demand is growing for training in the essential skills needed to successfully implement site-specific crop management. This set of skills is uniquely interdisciplinary in nature. Thus, it is essential for potential users of precision agriculture to understand the basics of geodetic and electronic control equipment, principles of geographic information systems, fundamenta... V.I. Adamchuk, R.B. Ferguson

3. Interpretation Of Thinking Process In Farmer’s Decision

An idea of knowledge management is composed of (1) defining the four steps of recognition: data, information, knowledge and wisdom, (2) decision-make actions of evidence mining and context making, (3) system makeup of input and output on management. In simulating expert farmers’ practiced, five factors of farming system and eleven units of thinking were derived. The five factors are crop, field, techno... S. Shibusawa

4. Experiencs Of Extension Education Via Online Delivery Of Programming Related To Precision Agriculture Technologies

This paper will describe the content and experiences teaching an extension education course on precision agriculture technologies via online delivery. The course was developed to be delivered in 16 weeks meeting one time a week online. There was also a one-day face-to-face hands-on session focused around 4 lab type activities related to GPS guidance, diagnosis, and setup and maximizing the usefulness of precision agriculture technologies. This course focuses on agricultura... D.K. Shannon

5. Revisited: A Case Study Approach For Teaching And Applying Precision Agriculture

Current agricultural students understand and are excited about new technologies, but often do not understand how precision agriculture can be applied to farming operations. A case-study approach that requires students to develop precision agriculture management practices which includes selecting equipment and assessing the financial feasibility could help students understand and apply precision agriculture. This paper revisits a case-study approach to teaching precision agriculture and descri... J.D. Williams, S.D. Mcgary, M. Waits

6. Isobus Demonstrator And Working Environment For Agricultural Engineering Education

ISOBUS is the international standard for communication on agricultural equipment. In practice, however, a manufacturer independent tractor-implement communication is still a significant problem. This aspect has been identified as a major hindrance for the transfer of research results into products for precision farming.  As a consequence the ISOBUS standard should strongly be included in education and research, which is the focus of this work. &nb... A. Ruckelshausen, T. Dzinaj, T. Kinder, D. Bosse, R. Klose

7. Farmer Perspectives Of Precision Agriculture In Western Australia

Many farmers in the Western Australian wheatbelt have successfully adopted guidance and yield mapping technologies. However they have so far avoided adopting variable rate technology (VRT).  While agronomists and farmers can determine the limiting factors to production, whether it is soil fertility, pH, plant available water capacity (PAWC) or others, they have less confidence in managing spatial variability. Although WA farmers understand the need to adopt these techniques they h... R. Mandel

8. FOODIE Data Model for Precision Agriculture

The agriculture sector is a unique sector due to its strategic importance for both citizens (consumers) and economy (regional and global), which ideally should make the whole sector a network of interacting organizations. The FOODIE project aims at building an open and interoperable agricultural specialized platform hub on the cloud for the management of spatial and non-spatial data relevant for farming production. The FOODIE service platform deals with including their thematic, spatial, and ... K. Charvat, T. Reznik, K. Charvat jr., V. Lukas, S. Horakova, M. Kepka

9. Modus: a Standard for Big Data

Modus Standard is a system of defined terminology, agreed metadata and file transfer format that has grown from a need to exchange, merge and trend agricultural testing data. The three presenters will discuss steps taken to develop the system, benefits to data exchange, current user base and additions being made to the standard. ... D. Nerpel, J.W. Ellsworth, A. Hunt

10. Key Data Ownership, Privacy and Protection Issues and Strategies for the International Precision Agriculture Industry

Precision agriculture companies seek to leverage technology to process greater volumes of data, greater varieties of data, and at a velocity unfathomable to most. The promises of boundless benefits are coupled with risks associated with data ownership, stewardship and privacy. This paper presents some risks related to the management of farm data, in general, as well as those unique to operating in the international arena.  Examples of U.S. and international laws related to data protectio... J.K. Archer, C.A. Delgadillo, F. Shen

11. Ownership and Protections of Farm Data

Farm data has been a contentious point of debate with respect to ownership rights and impacts when access rights are misappropriated. One of the leading questions farmers ask deals with the protections provided to farm data. Although no specific laws or precedence exists, the possibility of trade secret is examined and ramifications for damages discussed. Farm management examples are provided to emphasize the potential outcomes of each possible recourse for misappropriating farm data. ... A. Ellixson, P. Goeringer, T. Griffin

12. Toward Geopolitical-Context-Enabled Interoperability in Precision Agriculture: AgGateway's SPADE, PAIL, WAVE, CART and ADAPT

AgGateway is a nonprofit consortium of 240+ businesses working to promote, enable and expand eAgriculture. It provides a non-competitive collaborative environment, transparent funding and governance models, and anti-trust and intellectual property policies that guide and protect members’ contributions and implementations. AgGateway primarily focuses on implementing existing standards and collaborating with other organizations to extend them when necessary. In 2010 AgGateway id... R. Ferreyra, D.B. Applegate, A.W. Berger, D.T. Berne, B.E. Craker, D.G. Daggett, A. Gowler, R.J. Bullock, S.C. Haringx, C. Hillyer, T. Howatt, B.K. Nef, S.T. Rhea, J.M. Russo, S.T. Nieman, P. Sanders, J.A. Wilson, J.W. Wilson, J.W. Tevis, M.W. Stelford, T.W. Shearouse, E.D. Schultz, L. Reddy

13. Rationale for and Benefits of a Community for On-Farm Data Sharing

Most data sets for evaluating crop production practices have too few locations and years to create reliable probabilities from predictive analytical analyses for the success of the practices. Yield monitors on combines have the potential to enable networks of farmers in collaboration with scientists and farm advisors to collect sufficient data for calculation of more reliable guidelines for crop production showing the probabilities that new or existing practices will improve the efficiency of... T. Morris, N. Tremblay, P.M. Kyveryga, D.E. Clay, S. Murrell, I. Ciampitti, L. Thompson, D. Mueller, J. Seger

14. Grassland System Impacts on Spatial Variability of Soil Phosphorus in Eastern Canada

Phosphorus (P) is an essential nutrient for plants, including grasslands. However, continuous applications of P fertilizer result in P accumulations in the soil, increasing the risk of P losses through runoff and erosion. Since 2008, more than 31 million tonnes of organic fertilizers, representing more than 95,000 tonnes of P2O5, were applied to agricultural fields in Eastern Canada. Thus, grassland systems were fertilized intensively using organic fertilizers with high ... J.D. Nze memiaghe, A. Cambouris