Login

Proceedings

Find matching any: Reset
Add filter to result:
Sensor Based Soil Health Assessment
K. Veum, K. Sudduth, N. Kitchen
USDA-ARS

Quantification and assessment of soil health involves determining how well a soil is performing its biological, chemical, and physical functions relative to its inherent potential. Due to high cost, labor requirements, and soil disturbance, traditional laboratory analyses cannot provide high resolution soil health data. Therefore, sensor-based approaches are important to facilitate cost-effective, site-specific management for soil health. In the Central Claypan Region, visible, near-infrared (VNIR) diffuse reflectance spectroscopy has successfully been used to estimate biological components of soil health as well as Soil Management Assessment Framework (SMAF) scores. In contrast, estimation models for important chemical and physical aspects of soil health have been less successful with VNIR spectroscopy. In this study, a sensor fusion approach was investigated that incorporated VNIR spectroscopy, soil apparent electrical conductivity (ECa), and penetration resistance measured by cone penetrometer (i.e., cone index, CI). Soil samples were collected from two depths (0-5 and 5-15 cm) at 108 locations within a 10-ha research site encompassing different cropping systems and landscape positions. Soil health measurements and VNIR spectral data were obtained in the laboratory, while CI and ECa data were obtained in situ. Calibration models were developed with partial least squares (PLS) regression and model performance was evaluated using coefficient of determination (R2), root mean squared error (RMSE), and residual prediction deviation (RPD). Models integrating ECa and CI with VNIR reflectance data improved estimates of the overall SMAF score (R2 = 0.78, RPD = 2.13) relative to VNIR alone (R2 = 0.69, RPD = 1.82), reducing RMSE by 14%. Improved models were also achieved for estimates of the individual biological, chemical, and physical soil health scores. The results of this study illustrate the potential for rapid, in-field quantification of soil health by fusing VNIR sensors with auxiliary data obtained from complementary sensors.

Keyword: VNIR spectroscopy, soil health, reflectance, apparent electrical conductivity, cone index