Login

Proceedings

Find matching any: Reset
Darr, M.J
Nuyttens, D
Bareth, G
Add filter to result:
Authors
Yao, Y
Miao, Y
Huang, S
Gnyp, M.L
Khosla, R
Jiang, R
Bareth, G
Yao, Y
Miao, Y
Huang, S
Gnyp, M.L
Jiang, R
Chen, X
Bareth, G
Griffin, S
Darr, M.J
Fulton, J.P
Darr, M.J
Taylor, R.K
McDonald, T.P
Gnyp, M.L
Panitzki, M
Reusch, S
Jasper, J
Bolten, A
Bareth, G
Huang, S
Miao, Y
Yuan, F
Gnyp, M.L
Yao, Y
Cao, Q
Lenz-Wiedemann, V
Bareth, G
Delauré, B
Baeck, P
Blommaert, J
Delalieux, S
Livens, S
Sima, A
Boonen, M
Goffart, J
Jacquemin, G
Nuyttens, D
Bareth, G
Jenal, A
Hüging, H
Topics
Sensor Application in Managing In-season Crop Variability
Sensor Application in Managing In-season Crop Variability
Spatial Variability in Crop, Soil and Natural Resources
Optimizing Farm-level use of Spatial Technologies
Remote Sensing Applications in Precision Agriculture
Unmanned Aerial Systems
Applications of Unmanned Aerial Systems
Type
Poster
Oral
Year
2012
2010
2016
2022
Home » Authors » Results

Authors

Filter results8 paper(s) found.

1. Developing An Active Crop Sensor-based In-season Nitrogen Management Strategy For Rice In Northeast China

  Crop sensor-based in-season N management strategies have been successfully developed and evaluated for winter wheat around the world, but little has been reported for rice. The objective of this study was to develop an active crop sensor-based in-season N management strategy for upland rice in Northeast... Y. Yao, Y. Miao, S. Huang, M.L. Gnyp, R. Jiang, X. Chen, G. Bareth

2. Assessment Of The Success Of Variable Rate Seeding Based On EMI Maps

  Good plant establishment is the critical first step in growing a crop. To achieve this, the correct seed rate must be calculate. This is done by assessing the optimum target plant population per m² and then making an estimate of any  losses over winter. Losses will depend on the quality of seedbed created which is related to texture, stoniness and compaction of the soil. If there is any variation in these field characteristics then the correct seed... S. Griffin, M. Darr

3. Proper Implementation Of Precision Agricultural Technologies For Conducting On-farm Research

Precision agricultural technologies provide farmers, practitioners and researchers the ability to conduct on-farm or field-scale research to refine farm management, improve long term crop production decisions, and implement site-specific management strategies. However, the limitations of these technologies must be understood to draw accurate and meaningful conclusions from such investigations. Therefore, the objective of this paper was to outline the limitations of several... J.P. Fulton, M.J. Darr, R.K. Taylor, T.P. Mcdonald

4. In-season Diagnosis of Rice Nitrogen Status Using an Active Canopy Sensor

... Y. Yao, Y. Miao, S. Huang, M. Gnyp, R. Khosla, R. Jiang, G. Bareth

5. Comparison Between Tractor-based and UAV-based Spectrometer Measurements in Winter Wheat

In-season variable rate nitrogen fertilizer application needs a fast and efficient determination of nitrogen status in crops. Common sensor-based monitoring of nitrogen status mainly relies on tractor mounted active or passive sensors. Over the last few years, researchers tested different sensors and indicated the potential of in-season monitoring of nitrogen status by unmanned aerial vehicles (UAVs) in various crops. However, the UAV-platforms and the available sensors are not yet accepted to... M. Gnyp, M. Panitzki, S. Reusch, J. Jasper, A. Bolten, G. Bareth

6. Potential Improvement in Rice Nitrogen Status Monitoring Using Rapideye and Worldview-2 Satellite Remote Sensing

For in-season site-specific nitrogen (N) management of rice to be successful, it is crucially important to diagnose rice N status efficiently across large area in a timely fashion. Satellite remote sensing provides a promising technology for crop growth monitoring and precision management over large areas. The FORMOSAT-2 satellite remote sensing imageries with 4 wavebands have been used to estimate rice N status. The objective of this study was to evaluate the potential of using high spatial resolution... S. Huang, Y. Miao, F. Yuan, M.L. Gnyp, Y. Yao, Q. Cao, V. Lenz-wiedemann, G. Bareth

7. High Resolution Vegetation Mapping with a Novel Compact Hyperspectral Camera System

The COSI-system is a novel compact hyperspectral imaging solution designed for small remotely piloted aircraft systems (RPAS). It is designed to supply accurate action and information maps related to the crop status and health for precision agricultural applications. The COSI-Cam makes use of a thin film hyperspectral filter technology which is deposited onto an image sensor chip resulting in a compact and lightweight instrument design. This paper reports on the agricultural monitoring... B. Delauré, P. Baeck, J. Blommaert, S. Delalieux, S. Livens, A. Sima, M. Boonen, J. Goffart, G. Jacquemin, D. Nuyttens

8. N-management Using Structural Data: UAV-derived Crop Height As an Estimator for Biomass, N Concentration, and N Uptake in Winter Wheat

In the last 15 years, sensors mounted on Unmanned Aerial Vehicles (UAVs) have been intensively investigated for crop monitoring. Besides known remote sensing approaches based on multispectral and hyperspectral sensors, photogrammetric methods became very important. Structure for Motion (SfM) and Multiview Stereopsis (MVS) analysis approaches enable the quantitative determination of absolute crop height and crop growth. Since the first paper on UAV-derived crop height was published by Bendig et... G. Bareth, A. Jenal, H. Hüging