Login

Proceedings

Find matching any: Reset
Herrmann, I
Add filter to result:
Authors
Bonfil, D.J
Shapira, U
Karnieli, A
Herrmann, I
Kinast, S
Bonfil, D.J
Herrmann, I
Pimstein, A
Karnieli, A
Shapira , U
Herrmann, I
Karnieli, A
Bonfil, D.J
Herrmann, I
Pimstein, A
Karnieli, A
Cohen, Y
Alchanatis , V
Bonfil, D.J
Herrmann, I
Vosberg, S
Ravindran, P
Singh, A
Townsend, P
Conley, S
Sahoo, M
Tarshish, R
Alchanatis , V
Herrmann, I
Topics
Remote Sensing Applications in Precision Agriculture
Remote Sensing Applications in Precision Agriculture
Precision Agriculture and Global Food Security
Proximal and Remote Sensing of Soils and Crops (including Phenotyping)
Type
Poster
Oral
Year
2012
2010
2018
2024
Home » Authors » Results

Authors

Filter results6 paper(s) found.

1. Multi, Super Or Hyper Spectral Data, The Right Way From Research Toward Application In Agriculture

Remote sensing provides opportunities for diverse applications in agriculture. One consideration of maximizing the utility of these applications, is the need to choose the most efficient spectral resolution. Picking the optimal spectral resolutions (multi, super or hyper) for a specific application is also influenced by other factors (e.g., spatial and temporal resolutions) of the utilized device. This work focuses mainly on... D.J. Bonfil, I. Herrmann, A. Pimstein, A. Karnieli

2. Weeds Detection By Ground-level Hyperspectral Imaging

Weeds are a severe pest in agriculture, causing extensive yield loss. Weed control of grass and broadleaf weeds is commonly performed by applying selective herbicides homogeneously all over the field. As presented in several studies, applying the herbicide only where needed has economical as well as environmental benefits. Combining remote sensing tools and techniques with the concept of precision agriculture has the potential to automatically... U. Shapira , I. Herrmann, A. Karnieli, D.J. Bonfil

3. Assessment Of Field Crops Leaf Area Index By The Red-edge Inflection Point Derived From Venus Bands

The red-edge region of leaves spectrum (700-800 nm) corresponds to the spectral region that connects the chlorophyll absorption in the red and the amplified reflectance caused by the leaf structure in the near infrared (NIR) parts of the spectrum. At the canopy level, the inflection point of the red-edge slope is influenced by the plant’s condition that is related to several properties, including Leaf Area Index (LAI) and plant nutritional status.... I. Herrmann, A. Pimstein, A. Karnieli, Y. Cohen, V. Alchanatis , D.J. Bonfil

4. Ground Level Hyperspectral Imagery For Weeds Detection In Wheat Fields

Weeds are a severe pest in agriculture resulting in extensive yield loss. Applying precise weed control has economical as well as environmental benefits. Combining remote sensing tools and techniques with the concept of precision agriculture has the potential to automatically locate and identify weeds in order to allow precise control. The objective of the current work is to detect annual... D.J. Bonfil, U. Shapira, A. Karnieli, I. Herrmann, S. Kinast

5. Exploring Tractor Mounted Hyperspectral System Ability to Detect Sudden Death Syndrome Infection and Assess Yield in Soybean

Pre-visual detection of crop disease is critical for both food and economic security. The sudden death syndrome (SDS) in soybeans, caused by Fusarium virguliforme (Fv), induces 100 million US$ crop loss, per year, in the US alone. Field-based spectroscopic remote sensing offers a method to enable timely detection, but still requires appropriate instrumentation and testing. Soybean plants were measured at canopy level over a course of a growing season to assess the capacity of spectral measurements... I. Herrmann, S. Vosberg, P. Ravindran, A. Singh, P. Townsend, S. Conley

6. Comparing Hyperspectral and Thermal UAV-borne Imagery for Relative Water Content Estimation in Field-grown Sesame

Sesame (Sesamum indicum) is an irrigated oilseed crop, and studies on its water content estimation are sparred. Unmanned aerial vehicle (UAV)-borne imageries using spectral reflectance as well as thermal emittance for crops are an ample source of high throughput information about their physiological and chemical traits. Though several studies have dealt with thermal emittance to assess the crop water content, evaluating its relation to the plant’s solar reflectance is limitedly... M. Sahoo, R. Tarshish, V. Alchanatis , I. Herrmann