Login

Proceedings

Find matching any: Reset
Sudduth, K.A
Add filter to result:
Authors
Sheridan, A
Sudduth, K.A
Kitchen, N.R
Sudduth, K.A
Kitchen, N.R
Drummond, S.T
Kim, H
Sudduth, K.A
Drew, P
Sudduth, K.A
Sadler, E
Sudduth, K.A
Kitchen, N.R
Vories, E.D
Drummond, S.T
Zhou, J
Sudduth, K.A
Feng, A
Ransom, C.J
Vong, C
Veum, K.S
Sudduth, K.A
Kitchen, N.R
Zhou, J
Sudduth, K.A
Kitchen, N.R
Conway, L.S
Lee, K
Sudduth, K.A
Zhou, J
Topics
Sensor Application in Managing In-season Crop Variability
Precision Nutrient Management
Sensor Application in Managing In-season Crop Variability
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Applications of Unmanned Aerial Systems
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Site-Specific Nutrient, Lime and Seed Management
Type
Poster
Oral
Year
2010
2016
2018
2022
Home » Authors » Results

Authors

Filter results9 paper(s) found.

1. Canopy Reflectance Sensing As Impacted By Corn Hybrid Growth

  Detection of physical and chemical properties within the growing season could help predict the overall health and yield of a corn crop. Little research has been done to show differences of corn hybrids on canopy reflectance sensing. This study was conducted to examine these potential differences during the early- to mid-vegetative growth stages of corn on three different soil types in Missouri. Canopy sensing (Crop Circle) and SPAD chlorophyll meter... A. Sheridan, K.A. Sudduth, N.R. Kitchen

2. Comparison Of Three Canopy Reflectance Sensors For Variable-rate Nitrogen Application In Corn

In recent years, canopy reflectance sensing has been investigated for in-season assessment of crop nitrogen (N) health and subsequent control of N fertilization. The several sensor systems that are now commercially available have design and operational differences. One difference is the sensed wavelengths, although these typically include wavelengths in both the visible and near-infrared ranges. Another difference is orientation – the sensors most commonly used in the US are designed to... K.A. Sudduth, N.R. Kitchen, S.T. Drummond

3. Laboratory Evaluation Of Ion-selective Electrodes For Simultaneous Analysis Of Macronutrients In Hydroponic Solution

... H. Kim, , , , K.A. Sudduth

4. Development of a Multispectral Sensor for Crop Canopy Temperature Measurement

Quantifying spatial and temporal variability in plant stress has precision agriculture applications in controlling variable rate irrigation and variable rate nutrient application. One approach to plant stress detection is crop canopy temperature measurement by the use of thermographic or radiometric methods, generally in the long wave infrared (LWIR) wavelength range. A confounding factor in LWIR canopy temperature estimation is eliminating the effect of the soil background in the image. One approach... P. Drew, K.A. Sudduth, E. Sadler

5. Compensating for Soil Moisture Effects in Estimation of Soil Properties by Electrical Conductivity Sensing

Bulk apparent soil electrical conductivity (ECa) is the most widely used soil sensing modality in precision agriculture. Soil ECa relates to multiple soil properties, including clay content (i.e., texture) and salt content (i.e., salinity). However, calibrations of ECa to soil properties are not temporally stable, due in large part to soil moisture differences between measurement dates. Therefore, the objective of this research was to investigate the effects of temporal soil moisture variations... K.A. Sudduth, N.R. Kitchen, E.D. Vories, S.T. Drummond

6. Monitoring Soybean Growth and Yield Due to Topographic Variation Using UAV-Based Remote Sensing

Remote sensing has been used as an important tool in precision agriculture. With the development of unmanned aerial vehicle (UAV) technology, collection of high-resolution site-specific field data becomes promising. Field topography affects spatial variation in soil organic carbon, nitrogen and water content, which ultimately affect crop performance. To improve crop production and reduce inputs to the field, it is critical to collect site-specific information in a real-time manner and at a large... J. Zhou, K.A. Sudduth, A. Feng

7. Estimating Soil Carbon Stocks with In-field Visible and Near-infrared Spectroscopy

Agricultural lands can be a sink for carbon and play an important role in offsetting carbon emissions. Current methods of measuring carbon sequestration—through repeated temporal soil samples—are costly and laborious. A promising alternative is using visible, near-infrared (VNIR) diffuse reflectance spectroscopy. However, VNIR data are complex, which requires several data processing steps and often yields inconsistent results, especially when using in situ VNIR measurements. Using... C.J. Ransom, C. Vong, K.S. Veum, K.A. Sudduth, N.R. Kitchen, J. Zhou

8. Soil, Landscape, and Weather Affect Spatial Distributions of Corn Population and Yield

As more planters are equipped with the technology to vary seeding rate, evaluation of the within-field relationships between plant stand density (or population) and yield is needed. One aspect of this evaluation is determining how stand loss and yield are related to soil and landscape factors, and how these relationships vary with different weather conditions. Therefore, this research examined nine site-years of mapped corn yield, harvest population, and soil and landscape data obtained for a... K.A. Sudduth, N.R. Kitchen, L.S. Conway

9. Hay Yield Estimation Using UAV-based Imagery and a Convolutional Neural Network

Yield monitoring systems are widely used commercially in grain crops to map yields at a scale of a few meters. However, such high-resolution yield monitoring and mapping for hay and forage crops has not been commercialized. Most commercial hay yield monitoring systems only obtain the weight of individual bales, making it difficult to map and understand the spatial variability in hay yield. This study investigated the feasibility of an unmanned aerial vehicle (UAV)-based remote sensing system for... K. Lee, K.A. Sudduth, J. Zhou