Login

Proceedings

Find matching any: Reset
Hegedus, P
Add filter to result:
Authors
Hegedus, P
Maxwell, B
Morales, G
Sheppard, J.W
Peerlinck, A
Hegedus, P
Maxwell, B
Peerlinck, A
Sheppard, J
Morales Luna, G.L
Hegedus, P
Maxwell, B
Topics
On Farm Experimentation with Site-Specific Technologies
Big Data, Data Mining and Deep Learning
Decision Support Systems
Type
Oral
Year
2022
Home » Authors » Results

Authors

Filter results3 paper(s) found.

1. Constraint of Data Availability on the Predictive Ability of Crop Response Models Developed from On-farm Experimentation

Due to the variability between fields and across years, on-farm experimentation combined with crop response modeling are crucial aspects of decision support systems to make accurate predictions of yield and grain protein content in upcoming years for a given field. To maximize accuracy of models, models fit using environmental covariate and experimental data gathered up to the point that crop responses (yield/grain protein) are fit repeatedly over time until the model can predict future crop responses... P. Hegedus, B. Maxwell

2. Generation of Site-specific Nitrogen Response Curves for Winter Wheat Using Deep Learning

Nitrogen response (N-response) curves are tools used to support farm management decisions. Conventionally, the N-response curve is modeled as an exponential function that aims to identify an important threshold for a given field: the economic optimum point. This is useful to determine the nitrogen rate beyond which there is no actual profit for the farmers. In this work, we show that N-response curves are not only field-specific but also site-specific and, as such, economic optimum points should... G. Morales, J.W. Sheppard, A. Peerlinck, P. Hegedus, B. Maxwell

3. Optimizing Nitrogen Application to Maximize Yield and Reduce Environmental Impact in Winter Wheat Production

Field-specific fertilizer rate optimization is known to be beneficial for improving farming profit, and profits can be further improved by dividing the field into smaller plots and applying site-specific rates across the field. Finding optimal rates for these plots is often based on data gathered from said plots, which is used to determine a yield response curve, telling us how much fertilizer needs to be applied to maximize yield. In related work, we use a Convolutional Neural Network, known... A. Peerlinck, J. Sheppard, G.L. Morales luna, P. Hegedus, B. Maxwell