Login

Proceedings

Find matching any: Reset
Oliveira, M.F
Add filter to result:
Authors
Oliveira, M.F
Carneiro, F.M
Thurmond, M
del Val, M.D
Oliveira, L.P
Ortiz, B
Sanz-Saez, A
Tedesco, D
Oliveira, M.F
Morata, G.T
Ortiz, B
Silva, R.P
Jimenez, A
Oliveira, M.F
Ortiz, B.V
Hanyabui, E
Costa Souza, J.B
Sanz-Saez, A
Luns Hatum de Almeida , S
Pilcon, C
Vellidis, G
Topics
Big Data, Data Mining and Deep Learning
Proximal and Remote Sensing of Soils and Crops (including Phenotyping)
Type
Oral
Poster
Year
2022
2024
Home » Authors » Results

Authors

Filter results3 paper(s) found.

1. Predicting Below and Above Ground Peanut Biomass and Maturity Using Multi-target Regression

Peanut growth and maturity prediction can help farmers and breeding programs improving crop management. Remote sensing images collected by satellites and drones make possible and accurate crop monitoring. Today, empirical relations between crop biomass and spectral reflectance could be used for prediction of single variables such as aboveground crop biomass, pod weight (PW), or peanut maturity. Robust algorithms such as multioutput regression (MTR) implemented through multioutput random forest... M.F. Oliveira, F.M. Carneiro, M. Thurmond, M.D. Del val, L.P. Oliveira, B. Ortiz, A. Sanz-saez, D. Tedesco

2. Coupling Machine Learning Algorithms and GIS for Crop Yield Predictions Based on Remote Sensing Imagery and Topographic Indices

In-season yield prediction can support crop management decisions helping farmers achieve their yield goals. The use of remote sensing to predict yield it is an alternative for non-destructive yield assessment but coupling auxiliary data such as topography features could help increase the accuracy of yield estimation. Predictive algorithms that can effectively identify, process and predict yield at field scale base on remote sensing and topography still needed. Machine learning could be an alternative... M.F. Oliveira, G.T. Morata, B. Ortiz, R.P. Silva, A. Jimenez

3. Use of Crop and Drought Spectral Indices to Support Harvest Decisions of Peanut Fields in Alabama

Harvest efficiency expressed in quantity and quality of peanut fields could increase if farmers are provided with tools to support harvest decisions. Peanut farmers still rely on a visual and empiric method to assess the right time of peanut maturity but this method does not account for within-field variability of crop growth and maturity. The integration of spectral vegetation indices to assess drought, soil moisture, and crop growth to predict peanut maturity can help farmers strengthen decisions... M.F. Oliveira, B.V. Ortiz, E. Hanyabui, J.B. Costa souza, A. Sanz-saez, S. Luns hatum de almeida , C. Pilcon, G. Vellidis