Authors
Filter results3 paper(s) found. |
---|
1. Ultra Low Level Aircraft (ULLA) As A Platform For Active Optical Sensing Of Crop BiomassCrop producers requiring crop biomass maps to support timely application of in-season fertilisers, pesticides or growth regulators rely on either on-ground active sensors or airborne/satellite imagery. Active crop sensing (for example using Yara N-SensorTM, GreenseekerTM or CropcircleTM) can only be used when the crop is accessible by person or vehicle, and extensive, high-resolution coverage is time consuming. On the other hand, airborne or satellite imaging is... D.W. Lamb, M.G. Trotter, D. Schneider |
2. Using A Decision Tree To Predict The Population Density Of Redheaded Cockchafer (Adoryphorus Couloni) In Dairy FieldsA native soil dwelling insect pest, the redheaded cockchafer (Adoryphorus couloni) (Burmeister) (RHC) is an important pest in the higher rainfall regions of south-eastern Australia. Due to the majority of its lifecycle spent underground feeding on the roots and soil organic matter the redheaded cockchafer is difficult to detect and control. The ability to predict the level of infestation and location of redheaded cockchafers in a field may give producers the option to use an endophyte containing... A. Cosby, G. Falzon, M. Trotter, J. Stanley, K. Powell, D. Schneider, D. Lamb |
3. Evaluating low-cost Lidar and Active Optical Sensors for pasture and forage biomass assessmentAccurate and reliable assessment of pasture or forage biomass remains one of the key challenges for grazing industries. Livestock managers require accurate estimates of the grassland biomass available over their farm to enable optimal stocking rate decisions. This paper reports on our investigations into the potential application of affordable Lidar (Light Detection and Ranging) systems and Active Optical (reflectance) Sensors (AOS) to estimate pasture biomass. We evaluated the calibration accuracy... M. Trotter, K. Andersson, M. Welch, M. Chau, L. Frizzel, D. Schneider |