Login

Proceedings

Find matching any: Reset
Ortiz, B
Add filter to result:
Authors
Ortiz, B
Ortiz, B
Thomson, S.J
Huang, Y
Reddy, K
Balkcom, K
Ortiz, B
Shockley, J
Fulton, J.P
Ortiz, B
Perry, C
Sullivan, D.G
Kemerait, R.C
Davis, R.F
Lu, P
Smith, A
Oliveira, M.F
Carneiro, F.M
Thurmond, M
del Val, M.D
Oliveira, L.P
Ortiz, B
Sanz-Saez, A
Tedesco, D
Oliveira, M.F
Morata, G.T
Ortiz, B
Silva, R.P
Jimenez, A
Topics
Precision A to Z for Practitioners
Remote Sensing Applications in Precision Agriculture
Guidance, Auto Steer, and GPS Systems
Precision Conservation
Big Data, Data Mining and Deep Learning
Type
Poster
Oral
Year
2012
2010
2022
Home » Authors » Results

Authors

Filter results6 paper(s) found.

1. Determination Of Crop Injury From Aerial Application Of Glyphosate Using Vegetation Indices And Geostatistics

Injury to crops caused by off-target drift of glyphosate can seriously reduce growth and yield, and is of great concern to farmers and aerial applicators. Determining an indirect method for assessing the levels and extent of crop injury could support management decisions. The objectives of this study were to evaluate multiple vegetation indices (VIs) as surrogate variables for glyphosate injury identification and to evaluate the combined use of Geostatistical methods and the VIs to assess... B. Ortiz, S.J. Thomson, Y. Huang, K. Reddy

2. Profitability Of RTK Autoguidance And Its Influence On Peanut Production

Efficient harvest of peanuts (Arachis hypogea L.) requires that the digging implement be accurately positioned directly over the target rows. Small driving... K. Balkcom, B. Ortiz, J. Shockley, J.P. Fulton

3. Variable Rate Application Of Nematicides On Cotton Fields: A Promising Site-specific Management Strategy

  The impact of two nematicides [ 1,3 – Dichloropropene (Telone® II) and Aldicarb (Temik)] applied at two rates on RKN population density and cotton (Gossypium hirsutum L.) lint yield were compared across previously determined RKN management zones (MZ) in commercial fields between 2007 and 2009. The MZ were delineated using fuzzy clustering of various surrogate data for soil texture. All treatments were randomly allocated among... B. Ortiz, C. Perry, D.G. Sullivan, R.C. Kemerait, R.F. Davis, P. Lu, A. Smith

4. Raising Awareness of the Potential of Crop Sensing Technologies to Improve Environmental Stewardship

Extensive research and on-farm work using active crop sensors for input management have been conducted in the Midwest and Great Plain USA with favorable results. Contrasting is the situation in the Southeast where the adoption by farmers is still limited and current on-going research is focused on the main southeastern crops. This presentation will provide an overview of the multiple extension activities related to crop sensing involving farmers, extension agents and crop consultants in Alabama.... B. Ortiz

5. Predicting Below and Above Ground Peanut Biomass and Maturity Using Multi-target Regression

Peanut growth and maturity prediction can help farmers and breeding programs improving crop management. Remote sensing images collected by satellites and drones make possible and accurate crop monitoring. Today, empirical relations between crop biomass and spectral reflectance could be used for prediction of single variables such as aboveground crop biomass, pod weight (PW), or peanut maturity. Robust algorithms such as multioutput regression (MTR) implemented through multioutput random forest... M.F. Oliveira, F.M. Carneiro, M. Thurmond, M.D. Del val, L.P. Oliveira, B. Ortiz, A. Sanz-saez, D. Tedesco

6. Coupling Machine Learning Algorithms and GIS for Crop Yield Predictions Based on Remote Sensing Imagery and Topographic Indices

In-season yield prediction can support crop management decisions helping farmers achieve their yield goals. The use of remote sensing to predict yield it is an alternative for non-destructive yield assessment but coupling auxiliary data such as topography features could help increase the accuracy of yield estimation. Predictive algorithms that can effectively identify, process and predict yield at field scale base on remote sensing and topography still needed. Machine learning could be an alternative... M.F. Oliveira, G.T. Morata, B. Ortiz, R.P. Silva, A. Jimenez