Login

Proceedings

Find matching any: Reset
Wireless Sensor Networks and Farm Connectivity
Add filter to result:
Authors
Armstrong, P
Arun, A
Balmos, A
Bazzi, C.L
Brown, A.J
Buckmaster, D
Castiblanco Rubio, F.A
Craven, S
Deleon, E
Everett, M
Everett, M
Franz, F
Hachisuca, A
Han, M
Hovio, H
Hunt, L
Jha, S
Krogmeier, J
Lajunen, A
Lee, B
Lichtenberg,, S
Love, D.J
Mazzeo, B
Oliveira, W.K
Raeth, P.G
Sandholtz, C
Schenatto, K
Sharda, A
Shende, K
Shovic, J
Shovic, J
Sobjak, R
Souza, E
Tasissa, A
Wardle, E
Wells, G
Zhang, N
Topics
Wireless Sensor Networks and Farm Connectivity
Type
Poster
Oral
Year
2024
Home » Topics » Results

Topics

Filter results11 paper(s) found.

1. LoRa Flood-messaging Sensor-data Transport

The practice of precision agriculture assumes the ability to place and monitor sensors. Remote monitoring is often employed as a means of alleviating tedious manual data gathering and recording. For remote monitoring to work, there has to be some automated means of reading sensor values and transmitting them to a basestation, someplace where the data is recorded and analyzed. If the data are recorded and analyzed at the point of sensing, some means is still required to send the results to whe... P.G. Raeth

2. Data Gator: a Provisionless Network Solution for Collecting Data from Wired and Wireless Sensors

Advances in wireless sensor technology and data collection in precision agriculture enable farmers and researchers to understand operational and environmental dynamics. These advances allow the tracking of water usage, temperature variation, soil pH, humidity, sunlight penetration, and other factors which are crucial for trend prediction and analysis. Capitalizing on this advancement, however, requires data collection infrastructure using large and varied sensor networks. Adoption and impleme... G. Wells, J. Shovic, M. Everett

3. AgDataBox-IoT - Managing IoT Data and Devices on Precision Agriculture

The increasing global population has resulted in a substantial demand for nourishment, which has prompted the agricultural sector to investigate ways to improve efficiency. Precision agriculture (PA) uses advanced technologies such as the Internet of Things (IoT) and sensor networks to collect and analyze field information. Although the advantages are numerous, the available data storage, management, and analysis resources are limited. Therefore, creating and providing a user-friendly web app... C.L. Bazzi, W.K. Oliveira, R. Sobjak, K. Schenatto, E. Souza, A. Hachisuca, F. Franz

4. Recovery Mechanism for Real-time Precision Agriculture Sensor Networks: a Case Study

Variable rate technologies are lagging behind other precision agriculture technologies in terms of farmer adoption, and sensor networks have been identified as a necessary step to implement these improvements. However, sensor networks face many issues in terms of cost, flexibility, and reliability. In rugged outdoor environments, it cannot be assumed that a sensor network will maintain constant connectivity to a monitoring interface, even if data is still being collected onsite. This paper pr... L. Hunt, M. Everett, J. Shovic

5. Nystrom-based Localization in Precision Agriculture Sensors

Wireless sensor networks play a pivotal role in a myriad of applications, ranging from agriculture and health monitoring and to tracking and structural health monitoring. One crucial aspect of these applications involves accurately determining the positions of the sensors. In this study, we study a novel Nystrom-based sampling protocol in which a selected group of anchor nodes, with known locations, establish communication with only a subset of the remaining sensor nodes. Leveraging partial d... A. Tasissa, S. Lichtenberg,

6. Optimizing the Connectivity of Wireless Underground Sensor Networks

In the rapidly evolving field of wireless communication, extending this technology into subterranean realms presents a frontier replete with unique challenges and opportunities. This study explores the intricate dynamics of establishing reliable connectivity in underground environments, a critical component for applications in diverse fields including precision agriculture and environmental monitoring. The distinct characteristics of underground settings impose significant obstacles for wirel... M. Han, N. Zhang, P. Armstrong

7. OATSmobile: a Data Hub for Underground Sensor Communications and Rural IoT

Wireless Underground Sensor Networks (WUSNs) play a crucial role in precision agriculture by providing information about moisture levels, temperature, nutrient availability, and other relevant factors. However, the use of radio-frequency identification (RFID) devices for WUSNs has been relatively unexplored despite their benefits such as low power consumption. In this work, we develop a hardware platform, called OATSMobile, that enables radio-frequency identification (RFID) communications in ... F.A. Castiblanco rubio, A. Arun, B. Lee, A. Balmos, S. Jha, J. Krogmeier, D.J. Love, D. Buckmaster

8. Crop and Water Monitoring Networks with Low-cost, Internet of Things Technology

Making meaningful changes in agroecosystems often requires the ability to monitor many environmental parameters to accurately identify potential areas for improvement in water quality and crop production. Increasingly, research questions are requiring larger and larger monitoring networks to draw applicable insights for both researchers and producers. However, acquiring enough sensors to address a particular research question is often cost-prohibitive, making it harder to draw meaningful conc... A.J. Brown, E. Deleon, E. Wardle

9. Long-range Bluetooth Smart Stakes and High-gain Receivers for High-density Sensing in Precision Agriculture

To achieve the goals of precision agriculture, accurate spatial-temporal soil information is needed, especially because soil properties can change within and between growing seasons. While remote sensing can provide high coverage, some soil properties must be measured in situ. Current existing industry solutions are too expensive per unit to deploy in sufficiently high density for dynamic management zones, creating a need for low-cost sensor networks.... S. Craven, C. Sandholtz, B. Mazzeo

10. Hardware Design, Validation & Integration of Wireless Data Communication Platform for Site Specific Liquid Application System

Autonomous farming applications require real-time data handling of information gathered by diverse sensors on the platform. Transmitting dynamic information swiftly is crucial, but currently available systems often lack this capability, resulting in data loss. An urgent need exists for an instant wireless communication platform to capture, relay, and process data efficiently to the central hub for further processing. This study focuses on the development of a wireless data... K. Shende, A. Sharda

11. Affordable Telematics System for Recording and Monitoring Operational Data in Crop Farming

The aim of this research was to create an affordable telematics system for agricultural tractors for enhancing existing data logging capabilities. This system enables real-time transmission of operational data from the tractor's CAN bus to a server for storage, monitoring, and further analysis. By leveraging standardized communication protocols like ISO 11783 and J1939, operational data such as fuel consumption and engine load can be easily monitored. The system was built around a Raspber... A. Lajunen, H. Hovio