Login

Proceedings

Find matching any: Reset
Klein, R.N
Werkmeister, B.K
Perron, I
Vigneault, P
Add filter to result:
Authors
Tremblay, N
Vigneault, P
Bouroubi, M.Y
Dorais, M
Gianquinto, G.P
Tempesta, M
Klein, R.N
Golus, J.A
Ellingson, J.L
Holub, B.K
Morgan, S.E
Werkmeister, B.K
Vigneault, P
Tremblay, N
Bouroubi, M.Y
Belec, C
Fallon, E
Tremblay, N
Khun, K
Vigneault, P
Bouroubi, M.Y
Cavayas, F
Codjia, C
Zebarth, B
Goyer, C
Neupane, S
Li, S
Mills, A
Whitney, S
Cambouris, A
Perron, I
Cambouris, A
Lajili, A
Chokmani , K
Perron, I
Adamchuk, V
Biswas , A
Zebrath, B
Biswas, A
Ji, W
Perron, I
Cambouris, A
Zebarth, B
Adamchuk, V
Cambouris, A
Perron, I
Zebarth, B
Vargas, F
Chokmani, K
Biswas, A
Adamchuk, V
Johnston, A
Adamchuk, V
Biswas, A
Cambouris, A
Lafond, J
Perron, I
Bouroubi, Y
Bugnet, P
Nguyen-Xuan, T
Bélec, C
Longchamps, L
Vigneault, P
Gosselin, C
Khun, K
Vigneault, P
Fallon, E
Tremblay, N
Codjia, C
Cavayas, F
Topics
Precision Horticulture
Guidance, Auto Steer, and GPS Systems
Applications of UAVs (unmanned aircraft vehicle systems) in precision agriculture
Unmanned Aerial Systems
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Site-Specific Nutrient, Lime and Seed Management
Big Data, Data Mining and Deep Learning
Applications of Unmanned Aerial Systems
Type
Poster
Oral
Year
2012
2010
2014
2016
2018
Home » Authors » Results

Authors

Filter results12 paper(s) found.

1. Using GPS-RTK In Crop Variety And Hybrid Evaluations

The traditional methods used by many to conduct research in crop variety and hybrid evaluations is to blank plant the area, flag the area, or use a physical marker. All of these have disadvantages. In blank planting it may be difficult to plant exactly in the same rows, and can dry the soil and affect seed germination if soil water is limited. Blank planting also destroys crop residues and with skip-row residues are destroyed in the unplanted rows.This method is used for many plots in cooperator’s... R.N. Klein, J.A. Golus

2. Remote Sensing of Nitrogen and Water Status on Boston Lettuce Transplants in a Greenhouse Environment

Remote sensing is the stand-off collection through the use of a variety of devices for gathering information on a given object or area. Applied as a warning tool in plant stock production, it is expected to help in the achievement of better, more uniform and more productive organic cropping systems. Remote sensing of vegetation targets can be achieved from the... N. Tremblay, P. Vigneault, M.Y. Bouroubi, M. Dorais, G.P. Gianquinto, M. Tempesta

3. Development Of An Enterprise Level Precision Agriculture System

Development of an Enterprise Level Precision Agriculture System   James Ellingson, Chih Lai University of St. Thomas, School of Engineering 2115 Summit Ave, St. Paul, MN USA elli4729@stthomas.edu;   Abstract – In this paper, a plan for the development of an Enterprise Level system for Precision Agriculture (PA) is described. The basic... J.L. Ellingson, B.K. Holub, S.E. Morgan, B.K. Werkmeister

4. A Comparison Of Performance Between UAV And Satellite Imagery For N Status Assessment In Corn

A number of platforms are available for the sensing of crop conditions. They vary from proximal (tractor-mounted) to satellites orbiting the Earth. A lot of interest has recently emerged from the access to unmanned aerial vehicles (UAVs) or drones that are able to carry sensors payloads providing data at very high spatial resolution. This study aims at comparing the performance of a UAV and satellite imagery acquired over a corn nitrogen response trial set-up. The nitrogen (N) response... P. Vigneault, N. Tremblay, M.Y. Bouroubi, C. Bélec, E. Fallon

5. Comparative Benefits of Drone Imagery for Nitrogen Status Determination in Corn

Remotely sensed vegetation data provide an effective means of measuring the spatial variability of nitrogen and therefore of managing applications by taking intrafield variations into account. Satellites, drones and sensors mounted on agricultural machinery are all technologies that can be used for this purpose. Although a drone (or unmanned aerial vehicle [UAV]) can produce very high-resolution images, the comparative advantages of this type of imagery have not been demonstrated. The goal of... N. Tremblay, K. Khun, P. Vigneault, M.Y. Bouroubi, F. Cavayas, C. Codjia

6. Soil Microbial Communities Have Distinct Spatial Patterns in Agricultural Fields

Soil microbial communities mediate many important soil processes in agricultural fields, however their spatial distribution at distances relevant to precision agriculture is poorly understood. This study examined the soil physico-chemical properties and topographic features controlling the spatial distribution of soil microbial communities in a commercial potato field in eastern Canada using next generation sequencing. Soil was collected from a transect (1100 m) with 83 sampling points in a landscape... B. Zebarth, C. Goyer, S. Neupane, S. Li, A. Mills, S. Whitney, A. Cambouris, I. Perron

7. Use of Proximal Soil Sensing to Delineate Management Zones in a Commercial Potato Field in Prince Edward Island, Canada

Management zones (MZs) are delineated areas within an agricultural field with relatively homogenous soil properties. Such MZs can often be used for site-specific management of crop production inputs. The purpose of this study was to determine the efficiency of two proximal soil sensors for delineating MZs in an 8.1-ha commercial potato (Solanum tuberosum L.) field in Prince Edward Island (PEI), Canada. A galvanic contact resistivity sensor (Veris-3100 [Veris]) and electromagnetic induction sensors... A. Cambouris, A. Lajili, K. Chokmani , I. Perron, V. Adamchuk, A. Biswas , B. Zebrath

8. Proximal Soil Sensing-Led Management Zone Delineation for Potato Fields

A fundamental aspect of precision agriculture or site-specific crop management is the ability to recognize and address local changes in the crop production environment (e.g. soil) within the boundaries of a traditional management unit. However, the status quo approach to define local fertilizer need relies on systematic soil sampling followed by time and labour-intensive laboratory analysis. Proximal soil sensing offers numerous advantages over conventional soil characterization and has shown... A. Biswas, W. Ji, I. Perron, A. Cambouris, B. Zebarth, V. Adamchuk

9. Delineation of Soil Management Zones: Comparison of Three Proximal Soil Sensor Systems Under Commercial Potato Field in Eastern Canada.

Precision agriculture (PA) involves optimization of seeding, fertilizer application, irrigation, and pesticide use to optimize crop production for the purpose of increasing grower revenue and protecting the environment. Potato crops (Solanum tuberosum L.) are recognized as good candidates for the adoption of PA because of the high cost of inputs. In addition, the sensitivity of potato yield and quality to crop management and environmental conditions makes precision management economically... A. Cambouris, I. Perron, B. Zebarth, F. Vargas, K. Chokmani, A. Biswas, V. Adamchuk

10. Integration of Proximal and Remote Sensing Data for Site-Specific Management of Wild Blueberry

In Saguenay-Lac-St-Jean, there are nearly 27,000 ha of wild blueberries (Vaccinium angustifolium Ait.). This production is carried out in fields with heterogeneous growing conditions due to the local changes in topography, key soil properties, and crop density. The main objective of this study was to develop a regression-based approach to site-specific management (SSM) by integrating proximally and remotely sensed data layers, namely, apparent soil electrical conductivity (ECa), field elevation,... A. Johnston, V. Adamchuk, A. Biswas, A. Cambouris, J. Lafond, I. Perron

11. Pest Detection on UAV Imagery Using a Deep Convolutional Neural Network

Presently, precision agriculture uses remote sensing for the mapping of crop biophysical parameters with vegetation indices in order to detect problematic areas, and then send a human specialist for a targeted field investigation. The same principle is applied for the use of UAVs in precision agriculture, but with finer spatial resolutions. Vegetation mapping with UAVs requires the mosaicking of several images, which results in significant geometric and radiometric problems. Furthermore, even... Y. Bouroubi, P. Bugnet, T. Nguyen-xuan, C. Bélec, L. Longchamps, P. Vigneault, C. Gosselin

12. Estimating Corn Biomass from RGB Images Acquired with an Unmanned Aerial Vehicle

Above-ground biomass, along with chlorophyll content and leaf area index (LAI), is a key biophysical parameter for crop monitoring. Being able to estimate biomass variations within a field is critical to the deployment of precision farming approaches such as variable nitrogen applications. With unprecedented flexibility, Unmanned Aerial Vehicles (UAVs) allow image acquisition at very high spatial resolution and short revisit time. Accordingly, there has been an increasing interest in... K. Khun, P. Vigneault, E. Fallon, N. Tremblay, C. Codjia, F. Cavayas