Authors
Filter results27 paper(s) found. |
---|
1. Quantifying Spatial Variability Of Indigenous Nitrogen Supply For Precision Nitrogen Management In North China Plain... Y. Miao, Q. Cao, Z. Cui, F. Li, T.H. Dao, R. Khosla, X. Chen |
2. Precision Manure Management: It Matters Where You Put Your Manure“Precision fertilizer management” has been around for more than a decade and is practiced widely in Colorado and elsewhere. By precision, we mean application of fertilizer at the right time, in the right place, and in the right amount. However, “Precision Manure Management” is a relatively new concept that converge the best manure management practices with precision nutrient management practices, such as variable rate nutrient application across site-specific management... M.E. Moshia, R. Khosla, J. Davis, D. Westfall |
3. Evaluation Of Different N Management Strategies Using A Tool For Fuzzy Multi Attributive Comparison Of AlternativesApplication of precision agriculture is related with choosing of optimal agrotechnilogy and, in particular, with definition of the best alternative of N management strategy. A potential satisfactory solution of this decision analysis problem could be the uses of multi attribute decision-making analysis based on fuzzy set theory and fuzzy logic (FMADA). This technique provides a means to achieve an optimal decision for real world problems which involve multiple alternatives and criteria... E. Krueger, D. Kurtener, D. Kurtener, R. Khosla |
4. Spatial Variability Of Measured Soil Properties Across Site- Specific Management ZonesThe spatial variation of productivity across farm fields can be classified by delineating site-specific management zones. Since productivity is influenced by soil characteristics, the spatial pattern of productivity could be caused by a corresponding variation in certain soil properties. Determining the source of variation in productivity can help achieve more effective site-specific management, the objectives of this study were (i) to characterize the spatial variability of soil physical properties... M. Mzuku, R. Khosla, R. Reich, G. Http://icons.paqinteractive.com/16x16/ac, F. Smith, L. Macdonald |
5. Development Of A Nitrogen Requirement Algorithm Using Ground-based Active Remote Sensors In Irrigated MaizeStudies have shown that normalized difference vegetation index (NDVI) from ground-based active remote sensors is highly related with leaf N content in maize (Zea mays). Remotely sensed NDVI imagery can provide valuable information about in-field N variability in maize and significant linear relationships between sensor NDVI and maize grain yield have been found suggesting that an N recommendation algorithm based on NDVI could optimize N application. Therefore, a study was conducted using the two... T. Shaver, R. Khosla, D. Westfall |
6. Spatio-temporal Analysis Of Atrazine Degradation And Associated Attributes In Eastern Colorado SoilsAtrazine catabolism is an example of a rapidly evolved soil microbial adaptation. In the last 20 years, atrazine-degrading bacteria have become globally distributed, and many soils have developed enhanced capacities to degrade atrazine, reducing its half-life from 60 to a few days or less. While the presence of atrazine-degrading bacteria determine a soil's potential to catabolize atrazine,... M. Stromberger, R. Khosla, D. Shaner, D. Zach |
7. Precision Nitrogen Management and Global Nitrogen Use EfficiencyTraditionally, nitrogen (N) fertilizers have been applied uniformly across entire field while ignoring inherent spatial variation in crop N needs across crop fields. This results in either too little or too much application of N in various parts of the fields.... M. Gupta, R. Khosla |
8. A Statistical and an Agronomic Approach for Definition of Management Zones in Corn and SoybeanThe use of productivity level management zones (MZ) has demonstrated good potential for the site-specific management of crop inputs in traditional row crops. The objectives of this research were to analyze the process of defining MZs and develop methods to evaluate the quality of MZ maps. Two approaches were used to select the layers to be used in the MZ definition: 1) Statistical Approach (SA_MZ) and 2) Agronomic Approach (AA_MZ). The difference is that in the AA_MZ approach all non stable variables... C.L. Bazzi, E.G. Souza, R. Khosla, R.M. Reich |
9. Variation in Nitrogen Use Efficiency for Multiple Wheat Genotypes across Dryland and Irrigated Cropping SystemsABSTRACT ... M.A. Naser, R. Khosla, R. Reich, S. Haley, L. longchamps, M. Moragues, G.W. buchleiter, G.S. Mcmaster |
10. Early Detection of Corn N-Deficiency by Active Fluorescence Sensing in MaizeGlobally, the agricultural nitrogen use efficiency (NUE) is no more than 40 %. This low efficiency comes with an agronomic, economic and environmental cost. By better management of spatial and temporal variability of crop nitrogen need, NUE can be improved. Currently available crop canopy sensors based on reflectance are capable... R. Khosla, D.G. Westfall, L. Longchamps |
11. Comparing Sensing Platforms for Crop Remote SensingRemote sensing offers the possibility to obtain a rapid and non-destructive diagnosis of crop health status. This gives the opportunity to apply variable rates of fertilizers to meet the actual crop needs at every locations of the field. However, the commonly used normalized difference vegetation index (NDVI)... R. Khosla, L. Longchamps |
12. Testing The Author Sequence - FinalizeThis is just a test to verify the bug with the authors sequence. ... L. Longchamps, B. Panneton, D.G. Westfall, R. Khosla |
13. Precision Agriculture Initiative for Karnataka A New Direction for Strengthening Farming CommunityStrengthening agriculture is crucial to meet the myriad challenges of rural poverty, food security, unemployment, and sustainability of natural resources and it also needs strengthening at technical, financial and management levels. In this context... U.K. Shanwad, M.B. Patil, V. H, M. B.g , P. R, R. N.l. , S. S, R. Khosla, V.C. Patil |
14. In-season Diagnosis of Rice Nitrogen Status Using an Active Canopy Sensor... Y. Yao, Y. Miao, S. Huang, M. Gnyp, R. Khosla, R. Jiang, G. Bareth |
15. Performance of Two Active Canopy Sensors for Estimating Winter Wheat Nitrogen Status in North China Plain... Q. Cao, Y. Miao, G. Feng, X. Gao, B. Liu, R. Khosla |
16. Optimization Of Maize Yield: Relationship Between Management Zones, Hybrids And Plant PopulationCorn is highly sensitive to variations in plant population and it is one of the most important practices influencing in grain yield. Knowledge about plant physiology and morphology allow understanding how the crop interacts with plant population variation. Considering that for each production system there is a population that optimizes the use of available resources it is necessary to manage plant population to reach maximum grain yield on each particular environment. This study... A.A. Anselmi, J.P. Molin, R. Khosla |
17. Spectral Vegetation Indices to Quantify In-field Soil Moisture VariabilityAgriculture is the largest consumer of water globally. As pressure on available water resources increases, the need to exploit technology in order to produce more food with less water becomes crucial. The technological hardware requisite for precise water delivery methods such as variable rate irrigation is commercially available. Despite that, techniques to formulate a timely, accurate prescription for those systems are inadequate. Spectral vegetation indices, especially Normalized Difference... J. Siegfried, R. Khosla, L. Longchamps |
18. Climate Smart Precision Nitrogen ManagementClimate Smart Agriculture (CSA) aims at improving farm productivity and profitability in a sustainable way while building resilience to climate change and mitigating the impacts of agriculture on greenhouse gas emissions. The idea behind this concept is that informed management decision can help achieve these goals. In that matter, Precision Agriculture goes hand-in-hand with CSA. The Colorado State University Laboratory of Precision Agriculture (CSU-PA) is conducting research on CSA practices... L. Longchamps, R. Khosla, R. Reich |
19. Precision Nitrogen and Water Management for Enhancing Efficiency and Productivity in Irrigated MaizeNitrogen and water continue to be the most limiting factors for profitable maize production in the western Great Plains. The objective of this research was to determine the most productive and efficient nitrogen and water management strategies for irrigated maize. This study was conducted in 2016 at Colorado State University’s Agricultural Research Development and Educational Center, in Fort Collins, Colorado. The experiment included a completely randomized block design with five... E. Phillippi, R. Khosla, L. Longchamps, P. Turk |
20. Delineation of Site-specific Management Zones with Proximal Data and Multi-spectral ImageryMany findings suggested that it’s possible to improve the accuracy of delineating site-specific management zones (SSMZs) through a combination of proximal data with remote sensing imagery. The objective of this study is to assess the feasibility of delineating SSMZs with a wide range of ancillary data (proximal survey and multi-spectral data). The study area is a 22.1acre located 10 miles north of Fort Collins, CO and is known for having a high spatial and temporal variability of soil properties.... W.A. Yilma, J. Siegfried, R. Khosla |
21. Machine Learning Techniques for Early Identification of Nitrogen Variability in MaizeCharacterizing and managing nutrient variability has been the focus of precision agriculture research for decades. Previous research has indicated that in-situ fluorescence sensor measurements can be used as a proxy for nitrogen (N) status in plants in greenhouse conditions employing static sensor measurements. Indeed, practitioners of precision N management require determination of in-season plant N status in real-time at field scale to enable the most efficient N fertilizer... D. Mandal, R.D. Siqueira, L. Longchamps, R. Khosla |
22. Enhancing Spatial Resolution of Maize Grain Yield DataGrain yield data is frequently used for precision agriculture management purposes and as a parameter for evaluating agronomy experiments, but unexpected challenges sometimes interfere with harvest plans or cause total losses. The spatial detail of modern grain yield monitoring data is also limited by combine header width, which could be nearly 14 m in some crops. Remote sensing data, such as multispectral imagery collected via satellite and unmanned aerial systems (UAS), could be used to... J. Siegfried, R. Khosla, D. Mandal, W. Yilma |
23. Optimal Placement of Soil Moisture Sensors in an Irrigated Corn FieldPrecision agricultural practices rely on characterization of spatially and temporally variable soil and crop properties to precisely synchronize inputs (water, fertilizer, etc.) to crop needs; thereby enhancing input use efficiency and farm profitability. Generally, the spatial dependency range for soil water content is shorter near the soil surface compared to deeper depths, suggesting a need for more sampling locations to accurately characterize near-surface soil water content. However, determining... D. Mandal, L. Longchamps, R. Khosla |
24. Delineation of Site-Specific Management Zones using Sensor-based Data for Precision N managementNitrogen is a critical nutrient influencing crop yield, but the common practice of uniform application of nitrogen fertilizer across a field often results in spatially variable nitrogen availability for the crop, leading to over-application in some areas and under-application in others. This imbalance can cause economic losses and significant environmental issues. Precision nitrogen application involves application of N fertilizers based on soil conditions and crop requirements. One approach for... R. Joshi, R. Khosla, D. Mandal, R. Unruh, W.A. Admasu |
25. Delineating Dynamic Variable Rate Irrigation Management ZonesAgriculture irrigation strategies have traditionally been made without accounting for the natural small-scale variability in the field, leading to uniform applications that often over-irrigate parts of the field that do not need as much water. The future success of irrigated agriculture depends on advancements in the capability to account for and leverage the natural variability in croplands for optimum irrigation management both in space and time. Variable Rate Irrigation (VRI) management offers... R. Unruh, W.A. Yilma, D. Mandal, R. Joshi, R. Khosla |
26. Coupling Macro-scale Variability in Soil and Micro-scale Variability in Crop Canopy for Delineation of Site-specific Management GridThe efficient application of fertilizers via Site-Specific Management Units (SSMUs) or Management Zones (MZs) can significantly enhance crop productivity and nitrogen use efficiency. Conventional mathematical and data-driven clustering methods for MZ delineation, while prevalent, often lack precision in identifying productivity zones. This research introduces a knowledge-driven productivity zone to mitigate these limitations, offering a more precise and efficacious approach. The hypothesis... W.A. Admasu, D. Mandal, R. Khosla |
27. Hyperspectral Sensing to Estimate Soil Nitrogen and Reduce Soil Sampling IntensityRecognizing soil's critical role in agriculture, swift and accurate quantification of soil components, specifically nitrogen, becomes paramount for effective field management. Traditional laboratory methods are time-consuming, prone to errors, and require hazardous chemicals. Consequently, this research advocates the use of non-imaging hyperspectral data and VIS-NIR spectroscopy as a safer, quicker, and more efficient alternative. These methods take into account various soil components, including... W.A. Admasu, D. Mandal, R. Khosla |